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1. Motivation
Zeta function of a real analytic function:

Let n ∈ N and let f : (Rn, 0) → (R, 0) be a real analytic function.
For k ∈ N let

Lk := Lk(Rn, 0) =
{
γ(t) = a1t+a2t

2+. . .+aktk | a1, . . . , ak ∈ Rn
}

denote the space of polynomial arcs of degree at most k vanishing
at the origin and

Xk(f ) :=
{
γ(t) ∈ Lk | ord(f ◦ γ) = k

}
.

The zeta function of f is defined by

Zf (T ) :=
∞∑

k=1

(−1)−knχ
(
Xk(f )

)
T k ∈ Z[[T ]]

where χ denotes the Euler characteristic.
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I Koike, Parusinski

I Denef, Loeser

I Fichou

Arc space

Motivic invariants
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2. Integration on the field of Puiseux series
Let

P :=
{ ∞∑

j=k

aj t
j/p | p ∈ N, k ∈ Z, (aj) ⊂ R

}

be the field of Puiseux series over R.

Valuation:
The map

v : P→ Q ∪ {∞}, f 7→ min supp(f ),

is a valuation on P. Its valuation ring is the convex hull of Z and is
given by

O := {f ∈ P : supp(f ) ⊂ Q≥0}.
Its maximal ideal is given by

m := {f ∈ P : supp(f ) ⊂ Q>0}.
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I P is a model of the theory Tan of the structure Ran (sets and
functions definable in Ran are precisely the globally
subanalytic sets and functions).

I P carries a partial logarithm

log : R>0 + m → R+ m, a(1 + h) 7→ log(a) + L(h),

where a ∈ R>0, h ∈ m and L(x) =
∑∞

j=1
(−1)j−1

j x j denotes the
logarithmic series.
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I The field of Puiseux series is a subfield of the field T of
transseries. The partial logarithm on P can be extended to a
logarithm

log : P>0 → T, atq(1 + h) 7→ log(a) + L(h)− qX ,

where a ∈ R>0, h ∈ m, q ∈ Q and X := log(t−1) ∈ T \ P.
Note that X is transcendental over P with O < X < P>0 \ O.
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I have established a complete Lebesgue measure and integration
theory for the category of globally subanalytic sets and functions
over P:

{
gl. subanal. subsets of Pn

} → P[X ] ∪ {∞},

A 7→ λP,n(A),

and {
integrable gl. subanal. fcts Pn → P

} → P[X ],

f 7→
∫

f dλP,n,

such that the usual properties hold (adjusted to the globally
subanalytic setting):
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The measure is

I additive,

I monotone,

I reflects elementary geometry.

The integral fulfills

I the transformation theorem,

I Lebesgue’s theorem on dominated convergence.

Tobias Kaiser Universität Passau

Lebesgue motivic invariants



1. Motivation 3. Lebesgue zeta series

Extension of the valuation:
The valuation v is extended to a valuation v∗ on P[X ] as follows:
The value group of v∗ is given by Q× Z equipped with the
lexicographical order. We have v∗(X ) = (0,−1).
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3. Lebesgue zeta series

Let n ∈ N and let f : (Rn, 0) → (R, 0) be real analytic such that 0
is an isolated zero.
For q ∈ Q>0 let

Yq(f ) :=
{
x ∈ Pn | v(|x |) ≥ 1/q and v(f (x)) ≥ q

}

and
Yq(f ) :=

{
A ⊂ Pn gl. suban. | A ⊂ Yq(f )

}
.
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Proposition:
For every q ∈ Q>0 and every A ∈ Yq(f ) we have that

v∗
(
λP,n(A)

) ∈ Q>0 × {−n + 2, . . . , 0}.

Proposition:
For every q ∈ N the function

Yq(f ) → Q× Z, A 7→ v∗
(
λP,n(A)

)
,

attends a minimum.

We denote this minimum by µq(f ).
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We set
LZf (T ) :=

∑

k∈N
µk(f )T k ∈ (

Q× Z)
[[T ]]

and call it the Lebesgue zeta series of f .

Remark:
Let n ≤ 2. Then LZf (T ) ∈ Q[[T ]].

Example
Let f : R→ R be the identity. Then

LZf (T ) =
∞∑

k=1

kT k = − T

(1− T )2
.
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Two globally subanalytic functions f , g : (Rn, 0) → (R, 0) are
globally subanalytic bi-Lipschitz equivalent if there is a globally
subanalytic bi-Lipschitz map H : (Rn, 0) → (Rn, 0) such that
f = g ◦ H.

Theorem:
The Lebesgue zeta series is invariant under globally subanalytic
bi-Lipschitz equivalence.
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Let Q = Q ∪ {∞} be the tropical semiring:

⊕ : Q×Q → Q, (a, b) 7→ min{a, b},

⊗ : Q×Q → Q, (a, b) 7→ a + b.

We have that 0Q = ∞ and 1Q = 0Q.
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As usually, the polynomial semiring Q[T ] and the semiring Q[[T ]]
of power series over Q are defined.
For f =

∑∞
k=1 akT k ∈ Q[[T ]] the power series

f ∗ :=
∞∑

k=0

f ⊗k

is called the star of f .

Example: (1QT )∗ =
∑∞

k=0 kT k .
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The semiring of rational series is the smallest subsemiring S of
Q[[T ]] with the following properties:

I Q[T ] ⊂ S ,

I f ∈ S with f (0) = 0Q =⇒ f ∗ ∈ S .

Theorem:
Let n ≤ 2. Then the Lebesgue zeta function LZf (T ) ∈ Q[[T ]] is
rational.
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