Lebesgue motivic invariants

Tobias Kaiser

Universität Passau

20. Oktober 2015

Tobias Kaiser

Universität Passau

1. Motivation

Zeta function of a real analytic function:

Let $n \in \mathbb{N}$ and let $f : (\mathbb{R}^n, 0) \to (\mathbb{R}, 0)$ be a real analytic function. For $k \in \mathbb{N}$ let

$$\mathcal{L}_k := \mathcal{L}_k(\mathbb{R}^n, 0) = \left\{ \gamma(t) = a_1 t + a_2 t^2 + \ldots + a_k t^k \mid a_1, \ldots, a_k \in \mathbb{R}^n
ight\}$$

denote the space of polynomial arcs of degree at most k vanishing at the origin and

$$X_k(f) := \{\gamma(t) \in \mathcal{L}_k \mid \operatorname{ord}(f \circ \gamma) = k\}.$$

The **zeta function** of f is defined by

$$Z_f(T) := \sum_{k=1}^{\infty} (-1)^{-kn} \chi(X_k(f)) T^k \in \mathbb{Z}[[T]]$$

where χ denotes the Euler characteristic.

Tobias Kaiser

- Koike, Parusinski
- Denef, Loeser
- Fichou

Arc space

Motivic invariants

Tobias Kaiser

Universität Passau

2. Integration on the field of Puiseux series Let $_{\infty}$

$$\mathbb{P} := \Big\{ \sum_{j=k}^\infty \mathsf{a}_j t^{j/p} \mid p \in \mathbb{N}, k \in \mathbb{Z}, (\mathsf{a}_j) \subset \mathbb{R} \Big\}$$

be the field of Puiseux series over \mathbb{R} .

Valuation:

The map

$$v: \mathbb{P} \to \mathbb{Q} \cup \{\infty\}, f \mapsto \min \operatorname{supp}(f),$$

is a valuation on $\mathbb P.$ Its valuation ring is the convex hull of $\mathbb Z$ and is given by

$$\mathcal{O}:=\{f\in\mathbb{P}\colon \mathrm{supp}(f)\subset\mathbb{Q}_{\geq0}\}.$$

Its maximal ideal is given by

$$\mathfrak{m} := \{ f \in \mathbb{P} \colon \operatorname{supp}(f) \subset \mathbb{Q}_{>0} \}.$$

Tobias Kaiser

- ▶ \mathbb{P} is a model of the theory \mathcal{T}_{an} of the structure \mathbb{R}_{an} (sets and functions definable in \mathbb{R}_{an} are precisely the globally subanalytic sets and functions).
- \blacktriangleright \mathbb{P} carries a partial logarithm

$$\log : \mathbb{R}_{>0} + \mathfrak{m} \to \mathbb{R} + \mathfrak{m}, a(1+h) \mapsto \log(a) + L(h),$$

where $a \in \mathbb{R}_{>0}$, $h \in \mathfrak{m}$ and $L(x) = \sum_{j=1}^{\infty} \frac{(-1)^{j-1}}{j} x^j$ denotes the logarithmic series.

► The field of Puiseux series is a subfield of the field T of transseries. The partial logarithm on P can be extended to a logarithm

$$\log: \mathbb{P}_{>0} \to \mathbb{T}, at^q(1+h) \mapsto \log(a) + L(h) - qX,$$

where $a \in \mathbb{R}_{>0}$, $h \in \mathfrak{m}$, $q \in \mathbb{Q}$ and $X := \log(t^{-1}) \in \mathbb{T} \setminus \mathbb{P}$. Note that X is transcendental over \mathbb{P} with $\mathcal{O} < X < \mathbb{P}_{>0} \setminus \mathcal{O}$. I have established a complete Lebesgue measure and integration theory for the category of globally subanalytic sets and functions over \mathbb{P} :

$$\{\mathsf{gl. subanal. subsets of } \mathbb{P}^n\} \to \mathbb{P}[X] \cup \{\infty\},\$$

 $A\mapsto \lambda_{\mathbb{P},n}(A),$

and

$$ig\{ ext{integrable gl. subanal. fcts } \mathbb{P}^n o \mathbb{P} ig\} o \mathbb{P}[X],$$

 $f \mapsto \int f \, d\lambda_{\mathbb{P},n},$

such that the usual properties hold (adjusted to the globally subanalytic setting):

The measure is

- additive,
- monotone,
- reflects elementary geometry.
- The integral fulfills
 - ▶ the transformation theorem,
 - Lebesgue's theorem on dominated convergence.

Extension of the valuation:

The valuation v is extended to a valuation v^* on $\mathbb{P}[X]$ as follows: The value group of v^* is given by $\mathbb{Q} \times \mathbb{Z}$ equipped with the lexicographical order. We have $v^*(X) = (0, -1)$.

3. Lebesgue zeta series

Let $n \in \mathbb{N}$ and let $f : (\mathbb{R}^n, 0) \to (\mathbb{R}, 0)$ be real analytic such that 0 is an **isolated zero**. For $q \in \mathbb{Q}_{>0}$ let

$$Y_q(f):=ig\{x\in \mathbb{P}^n\mid v(|x|)\geq 1/q ext{ and } v(f(x))\geq qig\}$$

and

$$\mathcal{Y}_q(f) := \left\{ A \subset \mathbb{P}^n \text{ gl. suban. } | A \subset Y_q(f)
ight\}.$$

Tobias Kaiser

Proposition:

For every $q \in \mathbb{Q}_{>0}$ and every $A \in \mathcal{Y}_q(f)$ we have that

$$v^*(\lambda_{\mathbb{P},n}(A)) \in \mathbb{Q}_{>0} \times \{-n+2,\ldots,0\}.$$

Proposition:

For every $q \in \mathbb{N}$ the function

$$\mathcal{Y}_q(f) \to \mathbb{Q} \times \mathbb{Z}, A \mapsto v^*(\lambda_{\mathbb{P},n}(A)),$$

attends a minimum.

We denote this minimum by $\mu_q(f)$.

Tobias Kaiser

We set

$$LZ_f(T) := \sum_{k \in \mathbb{N}} \mu_k(f) T^k \in (\mathbb{Q} \times \mathbb{Z})[[T]]$$

and call it the **Lebesgue zeta series** of f.

Remark:

Let $n \leq 2$. Then $LZ_f(T) \in \mathbb{Q}[[T]]$.

Example

Let $f : \mathbb{R} \to \mathbb{R}$ be the identity. Then

$$LZ_f(T) = \sum_{k=1}^{\infty} kT^k = -\frac{T}{(1-T)^2}.$$

Tobias Kaiser

Two globally subanalytic functions $f, g : (\mathbb{R}^n, 0) \to (\mathbb{R}, 0)$ are globally subanalytic bi-Lipschitz equivalent if there is a globally subanalytic bi-Lipschitz map $H : (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$ such that $f = g \circ H$.

Theorem:

The Lebesgue zeta series is invariant under globally subanalytic bi-Lipschitz equivalence.

Let $Q = \mathbb{Q} \cup \{\infty\}$ be the **tropical semiring**: $\oplus : Q \times Q \rightarrow Q, (a, b) \mapsto \min\{a, b\},$ $\otimes : Q \times Q \rightarrow Q, (a, b) \mapsto a + b.$ We have that $0_Q = \infty$ and $1_Q = 0_{\mathbb{Q}}.$

Tobias Kaiser

As usually, the polynomial semiring $\mathcal{Q}[T]$ and the semiring $\mathcal{Q}[[T]]$ of power series over \mathcal{Q} are defined. For $f = \sum_{k=1}^{\infty} a_k T^k \in \mathcal{Q}[[T]]$ the power series

$$f^* := \sum_{k=0}^{\infty} f^{\otimes k}$$

is called the **star** of f.

Example:
$$(1_{\mathbb{Q}}T)^* = \sum_{k=0}^{\infty} kT^k$$
.

Tobias Kaiser

The semiring of **rational series** is the smallest subsemiring S of Q[[T]] with the following properties:

- ▶ $Q[T] \subset S$,
- $f \in S$ with $f(0) = 0_Q \Longrightarrow f^* \in S$.

Theorem:

Let $n \leq 2$. Then the Lebesgue zeta function $LZ_f(T) \in Q[[T]]$ is rational.