Orderings and R-places of function fields

Katarzyna Kuhlmann (joint work with P. Koprowski)

University of Silesia, Katowice, Poland

Luminy, October 2015

Katarzyna Kuhlmann (joint work with P. Koprowski) Orderings and R-places of function fields University of Silesia, Katowice, Poland

• • • • • • • • •

Space of orderings and \mathbb{R} - places

For any formally real field *K* we denote:

X(K) - the space of orderings of K with the Harrison topology,

M(K) - the space of \mathbb{R} -places of K with the quotient topology inherited from the space X(K).

Katarzyna Kuhlmann (joint work with P. Koprowski)

Orderings and R-places of function fields

K - a real closed field,

Katarzyna Kuhlmann (joint work with P. Koprowski)

Orderings and R-places of function fields

University of Silesia, Katowice, Poland

K - a real closed field,

K(x) - the rational function field over K,

Katarzyna Kuhlmann (joint work with P. Koprowski) Orderings and R-places of function fields University of Silesia, Katowice, Poland

► 4 3 ►

K - a real closed field,

K(x) - the rational function field over K,

 $\mathcal{C}(K)$ - the set of all cuts in *K*.

Katarzyna Kuhlmann (joint work with P. Koprowski) Orderings and R-places of function fields University of Silesia, Katowice, Poland

K - a real closed field,

K(x) - the rational function field over K,

 $\mathcal{C}(K)$ - the set of all cuts in *K*.

X(K(x)) \rightleftharpoons C(K)

Harrison topology homeomorphism order topology

Katarzyna Kuhlmann (joint work with P. Koprowski)

Orderings and R-places of function fields

University of Silesia, Katowice, Poland

• • • • • • • • •

The natural valuation *v* of *K* makes *K* an ultrametric space.

・ロト・四ト・ヨト・ヨー もくの

Katarzyna Kuhlmann (joint work with P. Koprowski) Orderings and R-places of function fields University of Silesia, Katowice, Poland

The natural valuation v of K makes K an ultrametric space. The ultrametric balls in K are of the following form:

Katarzyna Kuhlmann (joint work with P. Koprowski) Orderings and R-places of function fields

The natural valuation *v* of *K* makes *K* an ultrametric space. The ultrametric balls in *K* are of the following form:

 $B_S(a) = \{b \in K : v(b-a) > S\},\$

where $a \in K$ and *S* is a lower cut set in *vK*.

The natural valuation v of K makes K an ultrametric space. The ultrametric balls in K are of the following form:

 $B_S(a) = \{b \in K : v(b-a) > S\},\$

where $a \in K$ and *S* is a lower cut set in *vK*.

In other words: ultrametric balls are cosets of convex subgroups of *K*.

The natural valuation *v* of *K* makes *K* an ultrametric space. The ultrametric balls in *K* are of the following form:

 $B_S(a) = \{b \in K : v(b-a) > S\},\$

where $a \in K$ and *S* is a lower cut set in *vK*.

In other words: ultrametric balls are cosets of convex subgroups of *K*.

For $B = B_S(a)$ define:

 B^- the cut in *K* with the lower cut set $\{a \in K : a < B\}$,

 B^+ the cut in *K* with the upper cut set $\{a \in K : a > B\}$.

イロト イポト イヨト イヨト

The natural valuation *v* of *K* makes *K* an ultrametric space. The ultrametric balls in *K* are of the following form:

 $B_S(a) = \{b \in K : v(b-a) > S\},\$

where $a \in K$ and *S* is a lower cut set in *vK*.

In other words: ultrametric balls are cosets of convex subgroups of *K*.

For $B = B_S(a)$ define:

 B^- the cut in *K* with the lower cut set $\{a \in K : a < B\}$,

 B^+ the cut in *K* with the upper cut set $\{a \in K : a > B\}$.

The cuts defined above we call **ball cuts**.

Katarzyna Kuhlmann (joint work with P. Koprowski)

University of Silesia, Katowice, Poland

Orderings and R-places of function fields

Theorem (F.-V. Kuhlmann, M. Machura, K. K., 2010) Let $C_1 < C_2$ be cuts in K. The corresponding orderings of K(x)determine the same \mathbb{R} -place iff $C_1 = B^-$ and $C_2 = B^+$ for some ultrametric ball B in K.

Theorem (F.-V. Kuhlmann, M. Machura, K. K., 2010) Let $C_1 < C_2$ be cuts in K. The corresponding orderings of K(x)determine the same \mathbb{R} -place iff $C_1 = B^-$ and $C_2 = B^+$ for some ultrametric ball B in K.

If the field *K* is Archimedean, then we obtain a topological circle as the space of \mathbb{R} -places of *K*(*x*).

Katarzyna Kuhlmann (joint work with P. Koprowski)

Orderings and ℝ-places of function fields

 $M(K(x)) \cong \mathcal{C}(K)/_{\sim}$,

 $C_1 \sim C_2$ iff C_1 and C_2 are ball cuts of the same ultrametric ball.

Katarzyna Kuhlmann (joint work with P. Koprowski) Orderings and R-places of function fields University of Silesia, Katowice, Poland

イロト イポト イヨト

 $M(K(x)) \cong \mathcal{C}(K)/_{\sim}$,

 $C_1 \sim C_2$ iff C_1 and C_2 are ball cuts of the same ultrametric ball. The following maps on $K \cup \{\infty\}$:

 $a \mapsto a + c$,

University of Silesia, Katowice, Poland

Katarzyna Kuhlmann (joint work with P. Koprowski)

Orderings and R-places of function fields

 $M(K(x)) \cong \mathcal{C}(K)/_{\sim}$,

 $C_1 \sim C_2$ iff C_1 and C_2 are ball cuts of the same ultrametric ball. The following maps on $K \cup \{\infty\}$:

 $a \mapsto a + c, \ a \mapsto ca,$

University of Silesia, Katowice, Poland

Katarzyna Kuhlmann (joint work with P. Koprowski)

Orderings and R-places of function fields

 $M(K(x)) \cong \mathcal{C}(K)/_{\sim}$,

 $C_1 \sim C_2$ iff C_1 and C_2 are ball cuts of the same ultrametric ball. The following maps on $K \cup \{\infty\}$:

 $a \mapsto a + c$, $a \mapsto ca$, $a \mapsto 1/a$,

induce maps on C(K) preserving equivalence \sim .

 $M(K(x)) \cong \mathcal{C}(K)/_{\sim}$,

 $C_1 \sim C_2$ iff C_1 and C_2 are ball cuts of the same ultrametric ball. The following maps on $K \cup \{\infty\}$:

$$a \mapsto a + c$$
, $a \mapsto ca$, $a \mapsto 1/a$,

induce maps on C(K) preserving equivalence \sim .

This implies that the space M(K(x)) carries a lot of self-similarities.

Katarzyna Kuhlmann (joint work with P. Koprowski) Orderings and R-places of function fields University of Silesia, Katowice, Poland

F - a function field of trdeg 1 over the real closed field *K*.

Katarzyna Kuhlmann (joint work with P. Koprowski) Orderings and R-places of function fields

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

F - a function field of trdeg 1 over the real closed field *K*.

 γ - a smooth, irreducible, complete real algebraic curve over *K* with function field *F*.

F - a function field of trdeg 1 over the real closed field *K*.

 γ - a smooth, irreducible, complete real algebraic curve over *K* with function field *F*.

$$F \ni f : \gamma \to K \cup \{\infty\}.$$

Katarzyna Kuhlmann (joint work with P. Koprowski) Orderings and R-places of function fields

F - a function field of trdeg 1 over the real closed field *K*.

 γ - a smooth, irreducible, complete real algebraic curve over *K* with function field *F*.

$$F \ni f: \gamma \to K \cup \{\infty\}.$$

A strong (Euclidean) topology on γ is generated by the subbasis:

 $f^{-1}(K^+), f \in F.$

Katarzyna Kuhlmann (joint work with P. Koprowski)

Orderings and R-places of function fields

F - a function field of trdeg 1 over the real closed field *K*.

 γ - a smooth, irreducible, complete real algebraic curve over *K* with function field *F*.

$$F \ni f : \gamma \to K \cup \{\infty\}.$$

A strong (Euclidean) topology on γ is generated by the subbasis:

$$f^{-1}(K^+), f \in F.$$

How do the orderings of the function field *F* correspond to the structure of the curve γ ?

M. Knebusch On algebraic curves over real closed fields (I and II)

Katarzyna Kuhlmann (joint work with P. Koprowski) Orderings and R-places of function fields University of Silesia, Katowice, Poland

M. Knebusch *On algebraic curves over real closed fields* (I and II) $\mathcal{H}(F \mid K) = \{f \in F \mid f(p) \neq \infty \text{ for every } p \in \gamma\}$ $p_1 \sim p_2 \Leftrightarrow \neg \exists f \in U(\mathcal{H}(F \mid K)); f(p_1)f(p_2) < 0$

University of Silesia, Katowice, Poland

個 とくき とくき とう

Katarzyna Kuhlmann (joint work with P. Koprowski) Orderings and R-places of function fields

M. Knebusch *On algebraic curves over real closed fields* (I and II) $\mathcal{H}(F \mid K) = \{f \in F \mid f(p) \neq \infty \text{ for every } p \in \gamma\}$ $p_1 \sim p_2 \Leftrightarrow \neg \exists f \in U(\mathcal{H}(F \mid K)); f(p_1)f(p_2) < 0$ Let $\gamma_1, ..., \gamma_n$ be the distinct equivalence classes.

伺 とう ほう うちょう

$$\gamma = \gamma_1 \dot{\cup} ... \dot{\cup} \gamma_n \, .$$

Katarzyna Kuhlmann (joint work with P. Koprowski) Orderings and R-places of function fields

-University of Silesia, Katowice, Poland

イロト イポト イヨト

$$\gamma = \gamma_1 \dot{\cup} ... \dot{\cup} \gamma_n$$
.

For every γ_i there is a function $\eta_i \in F$ such that

$$sgn(\eta_i(p)) = \begin{cases} -1 & \text{if } p \in \gamma_i \\ 1 & \text{if } p \notin \gamma_i \end{cases}$$

University of Silesia, Katowice, Poland

イロト イロト イヨト

Katarzyna Kuhlmann (joint work with P. Koprowski)

Orderings and R-places of function fields

$$\gamma = \gamma_1 \dot{\cup} ... \dot{\cup} \gamma_n \, .$$

For every γ_i there is a function $\eta_i \in F$ such that

$$sgn(\eta_i(p)) = \begin{cases} -1 & \text{if } p \in \gamma_i \\ 1 & \text{if } p \notin \gamma_i . \end{cases}$$

The function η_i is determined uniquely up to multiplication by SOS.

Katarzyna Kuhlmann (joint work with P. Koprowski)

Orderings and R-places of function fields

On every component γ_i one can choose an orientation and with this orientation γ_i becomes cyclically ordered.

Katarzyna Kuhlmann (joint work with P. Koprowski) Orderings and R-places of function fields

On every component γ_i one can choose an orientation and with this orientation γ_i becomes cyclically ordered.

Therefore one can define intervals on γ_i .

Katarzyna Kuhlmann (joint work with P. Koprowski) Orderings and R-places of function fields

On every component γ_i one can choose an orientation and with this orientation γ_i becomes cyclically ordered.

Therefore one can define intervals on γ_i .

For every interval $(p,q) \subset \gamma_i$ there is a function $\chi_{(p,q)} \in F$ such that

$$sgn(\chi_{(p,q)}(r)) = \begin{cases} -1 & \text{if } r \in (p,q) \\ 0 & \text{if } r \in \{p,q\} \\ 1 & \text{if } r \notin [p,q] \end{cases}.$$

Katarzyna Kuhlmann (joint work with P. Koprowski)

Orderings and R-places of function fields

イロト 不得 とくほ とくほ とうほ

On every component γ_i one can choose an orientation and with this orientation γ_i becomes cyclically ordered.

Therefore one can define intervals on γ_i .

For every interval $(p,q) \subset \gamma_i$ there is a function $\chi_{(p,q)} \in F$ such that

$$sgn(\chi_{(p,q)}(r)) = \begin{cases} -1 & \text{if } r \in (p,q) \\ 0 & \text{if } r \in \{p,q\} \\ 1 & \text{if } r \notin [p,q]. \end{cases}$$

The function $\chi_{(p,q)}$ is called an interval function for (p,q) and it is determined uniquely up to SOS.

イロト イポト イヨト イヨト 一臣

The topology on γ induced by the order topology on every component γ_i coincides with the strong topology.

Katarzyna Kuhlmann (joint work with P. Koprowski) Orderings and R-places of function fields University of Silesia, Katowice, Poland

The topology on γ induced by the order topology on every component γ_i coincides with the strong topology.

Theorem

For every $f \in F$ and every γ_i there is a finite number of points $p_1 < ... < p_n$ on γ_i such that f is definite and monotonic on the intervals $(p_1, p_2), ..., (p_{n-1}, p_n), (p_n, p_1)$.

Katarzyna Kuhlmann (joint work with P. Koprowski)

Orderings and R-places of function fields
On every component γ_i we choose a point ∞_i .

Katarzyna Kuhlmann (joint work with P. Koprowski) Orderings and R-places of function fields University of Silesia, Katowice, Poland

A D > A B > A

On every component γ_i we choose a point ∞_i .

Definition *A* cut on γ_i is a pair (L, U) of subsets of γ_i such that: (1) $\gamma_i = L \cup U \cup \{\infty_i\},\$

On every component γ_i we choose a point ∞_i .

Definition *A cut on* γ_i *is a pair* (L, U) *of subsets of* γ_i *such that:* (1) $\gamma_i = L \cup U \cup \{\infty_i\},$ (2) L < U *i.e.*, $\infty_i \in (u, l)$ *for every* $l \in L$ *and* $u \in U$.

Katarzyna Kuhlmann (joint work with P. Koprowski) Orderings and R-places of function fields

On every component γ_i we choose a point ∞_i .

Definition *A cut on* γ_i *is a pair* (L, U) *of subsets of* γ_i *such that:* (1) $\gamma_i = L \cup U \cup \{\infty_i\},$ (2) L < U *i.e.*, $\infty_i \in (u, l)$ *for every* $l \in L$ *and* $u \in U$.

Theorem *Every cut* (L, U) *of* γ_i *corresponds to some ordering of* F*.*

On every component γ_i we choose a point ∞_i .

Definition *A cut on* γ_i *is a pair* (L, U) *of subsets of* γ_i *such that:* (1) $\gamma_i = L \cup U \cup \{\infty_i\},$ (2) L < U *i.e.*, $\infty_i \in (u, l)$ *for every* $l \in L$ *and* $u \in U$.

Theorem Every cut (L, U) of γ_i corresponds to some ordering of F.

$$\begin{aligned} P_{(L,U)} &= \{ f \in F \mid \\ \exists l \in L \cup \{\infty_i\} \exists u \in U \cup \{\infty_i\} \forall p \in (l,u) : f(p) > 0 \}. \end{aligned}$$

Katarzyna Kuhlmann (joint work with P. Koprowski)

Orderings and R-places of function fields

Principal cuts for $p \in \gamma_i$:

$$p^{-} = ((\infty_i, p), [p, \infty_i)) \text{ and } p^{+} = ((\infty_i, p], (p, \infty_i)).$$

Katarzyna Kuhlmann (joint work with P. Koprowski) Orderings and R-places of function fields

Principal cuts for $p \in \gamma_i$:

$$p^{-} = ((\infty_i, p), [p, \infty_i)) \text{ and } p^{+} = ((\infty_i, p], (p, \infty_i)).$$

The corresponding orderings P_{p^-} and P_{p^+} induce one and the same \mathbb{R} -place, which is the composition of the *K*-rational place associated with p and the natural place of K.

Katarzyna Kuhlmann (joint work with P. Koprowski) Orderings and R-places of function fields

Principal cuts for $p \in \gamma_i$:

$$p^{-} = ((\infty_i, p), [p, \infty_i)) \text{ and } p^{+} = ((\infty_i, p], (p, \infty_i)).$$

The corresponding orderings P_{p^-} and P_{p^+} induce one and the same \mathbb{R} -place, which is the composition of the *K*-rational place associated with p and the natural place of K.

Denote

$$X_{princ}(F) = \{P_{p^-}, P_{p^+} \mid p \in \gamma\}.$$

Theorem (A. Prestel, *Lectures on Formally Real Fields*, Th.9.9.) $X_{princ}(F)$ is dense in X(F).

Take $P \in X(F)$.

< ロト < @ ト < 差 ト < 差 ト = のへの</p>

Katarzyna Kuhlmann (joint work with P. Koprowski) Orderings and R-places of function fields

Take $P \in X(F)$. Define $\eta := \eta_1 \cdot \ldots \cdot \eta_n$.

Katarzyna Kuhlmann (joint work with P. Koprowski) Orderings and R-places of function fields

电 University of Silesia, Katowice, Poland

< □ > < 🗇

Take $P \in X(F)$. Define $\eta := \eta_1 \cdot ... \cdot \eta_n$. For every $p \in \gamma$ we have $\eta(p) < 0$.

Katarzyna Kuhlmann (joint work with P. Koprowski) Orderings and R-places of function fields University of Silesia, Katowice, Poland

イロト イ理ト イヨト イヨト

Take $P \in X(F)$. Define $\eta := \eta_1 \cdot ... \cdot \eta_n$. For every $p \in \gamma$ we have $\eta(p) < 0$. Therefore $-\eta$ is SOS in *F*.

Katarzyna Kuhlmann (joint work with P. Koprowski) Orderings and R-places of function fields

Take $P \in X(F)$. Define $\eta := \eta_1 \cdot ... \cdot \eta_n$. For every $p \in \gamma$ we have $\eta(p) < 0$. Therefore $-\eta$ is SOS in *F*. That implies that for at least one *i*, $-\eta_i \in P$.

Take $P \in X(F)$. Define $\eta := \eta_1 \cdot ... \cdot \eta_n$. For every $p \in \gamma$ we have $\eta(p) < 0$. Therefore $-\eta$ is SOS in *F*. That implies that for at least one $i, -\eta_i \in P$. Assume $-\eta_i \in P$ and $-\eta_j \in P$.

Take $P \in X(F)$. Define $\eta := \eta_1 \cdot ... \cdot \eta_n$. For every $p \in \gamma$ we have $\eta(p) < 0$. Therefore $-\eta$ is SOS in *F*. That implies that for at least one $i, -\eta_i \in P$. Assume $-\eta_i \in P$ and $-\eta_j \in P$. Then the Harrison basic set $H(-\eta_i) \cap H(-\eta_j)$ is nonempty.

Take $P \in X(F)$. Define $\eta := \eta_1 \cdot ... \cdot \eta_n$. For every $p \in \gamma$ we have $\eta(p) < 0$. Therefore $-\eta$ is SOS in *F*. That implies that for at least one $i, -\eta_i \in P$. Assume $-\eta_i \in P$ and $-\eta_j \in P$. Then the Harrison basic set $H(-\eta_i) \cap H(-\eta_j)$ is nonempty. By the density of $X_{princ}(F)$ in X(F), there is $p \in \gamma$ such that $\eta_i(p) < 0$ and $\eta_j(p) < 0$.

Take $P \in X(F)$. Define $\eta := \eta_1 \cdot ... \cdot \eta_n$. For every $p \in \gamma$ we have $\eta(p) < 0$. Therefore $-\eta$ is SOS in *F*. That implies that for at least one $i, -\eta_i \in P$. Assume $-\eta_i \in P$ and $-\eta_j \in P$. Then the Harrison basic set $H(-\eta_i) \cap H(-\eta_j)$ is nonempty. By the density of $X_{princ}(F)$ in X(F), there is $p \in \gamma$ such that $\eta_i(p) < 0$ and $\eta_j(p) < 0$. This contradiction proves:

Lemma

For every $P \in X(F)$ *there is exactly one Knebusch component* γ_i *such that* $-\eta_i \in P$.

Take $P \in X(F)$. Define $\eta := \eta_1 \cdot ... \cdot \eta_n$. For every $p \in \gamma$ we have $\eta(p) < 0$. Therefore $-\eta$ is SOS in *F*. That implies that for at least one $i, -\eta_i \in P$. Assume $-\eta_i \in P$ and $-\eta_j \in P$. Then the Harrison basic set $H(-\eta_i) \cap H(-\eta_j)$ is nonempty. By the density of $X_{princ}(F)$ in X(F), there is $p \in \gamma$ such that $\eta_i(p) < 0$ and $\eta_j(p) < 0$. This contradiction proves:

Lemma

For every $P \in X(F)$ *there is exactly one Knebusch component* γ_i *such that* $-\eta_i \in P$.

This component we call associated with the ordering *P*.

イロト イポト イヨト イヨト

Proposition *Take* $P \in X(F)$ *with associated Knebusch component* γ_i *. Let*

Katarzyna Kuhlmann (joint work with P. Koprowski) Orderings and R-places of function fields

Proposition *Take* $P \in X(F)$ *with associated Knebusch component* γ_i *. Let*

$$L = \{ p \in \gamma_i \mid \chi_{(\infty_i, p)} \in P \},\$$

University of Silesia, Katowice, Poland

Katarzyna Kuhlmann (joint work with P. Koprowski) Orderings and R-places of function fields

Proposition *Take* $P \in X(F)$ *with associated Knebusch component* γ_i *. Let*

$$L = \{ p \in \gamma_i \mid \chi_{(\infty_i, p)} \in P \},\$$

$$U = \{ p \in \gamma_i \mid \chi_{(p,\infty_i)} \in P \}.$$

Katarzyna Kuhlmann (joint work with P. Koprowski) Orderings and R-places of function fields

Proposition Take $P \in X(F)$ with associated Knebusch component γ_i . Let

$$L = \{ p \in \gamma_i \mid \chi_{(\infty_i, p)} \in P \},\$$

$$U = \{ p \in \gamma_i \mid \chi_{(p,\infty_i)} \in P \}.$$

Then (L, U) is a cut on γ_i and $P_{(L,U)} = P$.

Katarzyna Kuhlmann (joint work with P. Koprowski)

Orderings and R-places of function fields

University of Silesia, Katowice, Poland

<ロト < 同ト < 同ト

We obtain a bijection

 $b: X(F) \to \mathcal{C}(\gamma)$.

Katarzyna Kuhlmann (joint work with P. Koprowski) Orderings and R-places of function fields

-University of Silesia, Katowice, Poland

A 🖓

We obtain a bijection

$$b: X(F) \to \mathcal{C}(\gamma)$$
.

 $C(\gamma)$ carries the topology of the union of cyclically ordered sets. Take $C_1 < C_2 \in C(\gamma_i)$. Then

$$b^{-1}((C_1, C_2)) = \bigcup_{p,q \in U_1 \cap L_2} H(-\chi(p,q)).$$

Katarzyna Kuhlmann (joint work with P. Koprowski) Orderings and R-places of function fields

We obtain a bijection

$$b: X(F) \to \mathcal{C}(\gamma)$$
.

 $C(\gamma)$ carries the topology of the union of cyclically ordered sets. Take $C_1 < C_2 \in C(\gamma_i)$. Then

$$b^{-1}((C_1, C_2)) = \bigcup_{p,q \in U_1 \cap L_2} H(-\chi(p,q)).$$

Theorem

The space of orderings of F is homeomorphic to the space of cuts of γ *.*

Katarzyna Kuhlmann (joint work with P. Koprowski) Orderings and R-places of function fields

Take $x \in F \setminus K$. Then *x* is transcendental over *K* and $K(x) \subset F$.

Katarzyna Kuhlmann (joint work with P. Koprowski) Orderings and R-places of function fields University of Silesia, Katowice, Poland

イロト イポト イヨト

Take $x \in F \setminus K$. Then *x* is transcendental over *K* and $K(x) \subset F$.

Take a cut *C* of a component γ_i of γ .

Katarzyna Kuhlmann (joint work with P. Koprowski) Orderings and R-places of function fields

Take $x \in F \setminus K$. Then *x* is transcendental over *K* and $K(x) \subset F$.

Take a cut *C* of a component γ_i of γ .

The component γ_i can be divided into a finite number of intervals such that the function *x* is monotonic on each of them. The cut *C* belongs to exactly one of these intervals.

Take $x \in F \setminus K$. Then *x* is transcendental over *K* and $K(x) \subset F$.

Take a cut *C* of a component γ_i of γ .

The component γ_i can be divided into a finite number of intervals such that the function *x* is monotonic on each of them. The cut *C* belongs to exactly one of these intervals.

In that way we obtain a function

 $res_x: C(\gamma) \to C(K)$

Katarzyna Kuhlmann (joint work with P. Koprowski)

Orderings and R-places of function fields

University of Silesia, Katowice, Poland

イロト イポト イヨト イヨト

Take $x \in F \setminus K$. Then *x* is transcendental over *K* and $K(x) \subset F$.

Take a cut *C* of a component γ_i of γ .

The component γ_i can be divided into a finite number of intervals such that the function *x* is monotonic on each of them. The cut *C* belongs to exactly one of these intervals.

In that way we obtain a function

 $res_x: C(\gamma) \to C(K)$

and the following commuting diagram:

Orderings and R-places of function fields

イロト イポト イヨト イヨト

where horizontal maps are homeomorphisms.

Katarzyna Kuhlmann (joint work with P. Koprowski) Orderings and R-places of function fields

We have the following characterization of ball cuts in *K*:

Katarzyna Kuhlmann (joint work with P. Koprowski) Orderings and R-places of function fields

-University of Silesia, Katowice, Poland

イロト イポト イヨト

We have the following characterization of ball cuts in *K*:

Take a cut *C* in *K* and the corresponding ordering *P* of K(x).

Katarzyna Kuhlmann (joint work with P. Koprowski) Orderings and R-places of function fields

We have the following characterization of ball cuts in *K*:

Take a cut *C* in *K* and the corresponding ordering *P* of K(x). Let v_C be the natural valuation of *P* with value group Γ_C .

We have the following characterization of ball cuts in *K*:

Take a cut *C* in *K* and the corresponding ordering *P* of K(x). Let v_C be the natural valuation of *P* with value group Γ_C .

C is a ball cut $\Leftrightarrow [\Gamma_C : 2\Gamma_C] = 2$.

We have the following characterization of ball cuts in *K*:

Take a cut *C* in *K* and the corresponding ordering *P* of K(x). Let v_C be the natural valuation of *P* with value group Γ_C .

C is a ball cut
$$\Leftrightarrow [\Gamma_C : 2\Gamma_C] = 2$$
.

Fact If (L, v) / (K, v) is a finite extension of valued fields then [vL : 2vL] = [vK : 2vK].

Katarzyna Kuhlmann (joint work with P. Koprowski)

Orderings and R-places of function fields
Take a cut *C* of γ and $x \in F \setminus K$ and assume that $res_x(C)$ is a ball cut in *K*.

Take a cut *C* of γ and $x \in F \setminus K$ and assume that $res_x(C)$ is a ball cut in *K*.

Then $[\Gamma_{res_xC}: 2\Gamma_{res_xC}] = 2$ and thus $[\Gamma_C: 2\Gamma_C] = 2$.

Katarzyna Kuhlmann (joint work with P. Koprowski) Orderings and R-places of function fields

< □ > < 🗇

Take a cut *C* of γ and $x \in F \setminus K$ and assume that $res_x(C)$ is a ball cut in *K*.

Then $[\Gamma_{res_xC} : 2\Gamma_{res_xC}] = 2$ and thus $[\Gamma_C : 2\Gamma_C] = 2$.

That implies that for any $y \in F \setminus K$ we have $[\Gamma_{res_yC} : 2\Gamma_{res_yC}] = 2$, so $res_y(C)$ is also a ball cut in *K*.

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト ・

Take a cut *C* of γ and $x \in F \setminus K$ and assume that $res_x(C)$ is a ball cut in *K*.

Then $[\Gamma_{res_xC} : 2\Gamma_{res_xC}] = 2$ and thus $[\Gamma_C : 2\Gamma_C] = 2$.

That implies that for any $y \in F \setminus K$ we have $[\Gamma_{res_yC} : 2\Gamma_{res_yC}] = 2$, so $res_y(C)$ is also a ball cut in *K*.

Definition *A cut C of* γ *is called a ball cut if* $res_x(C)$ *is a ball cut for every* $x \in F \setminus K$.

Orderings and R-places of function fields

イロト イポト イヨト イヨト

Assume that we have chosen proper coordinates and we have an embedding of γ in K^m .

Katarzyna Kuhlmann (joint work with P. Koprowski) Orderings and R-places of function fields

A B > A
 B > A
 B
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A

Assume that we have chosen proper coordinates and we have an embedding of γ in K^m . The vector space K^m is an ultrametric space with the ultrametric distance:

$$d(p,q) = \min\{v(p_1 - q_1), ..., v(p_m - q_m)\} = \frac{1}{2}v(\sum(p_i - q_i)^2),$$

for
$$p = (p_1, ..., p_m)$$
 and $q = (q_1, ..., q_m)$.

Assume that we have chosen proper coordinates and we have an embedding of γ in K^m . The vector space K^m is an ultrametric space with the ultrametric distance:

$$d(p,q) = \min\{v(p_1 - q_1), ..., v(p_m - q_m)\} = \frac{1}{2}v(\sum(p_i - q_i)^2),$$

for
$$p = (p_1, ..., p_m)$$
 and $q = (q_1, ..., q_m)$.

For every ultrametric ball *B* in K^m we consider the sets $B \cap \gamma$ and $B^c \cap \gamma$.

Assume that we have chosen proper coordinates and we have an embedding of γ in K^m . The vector space K^m is an ultrametric space with the ultrametric distance:

$$d(p,q) = \min\{v(p_1 - q_1), ..., v(p_m - q_m)\} = \frac{1}{2}v(\sum(p_i - q_i)^2),$$

for
$$p = (p_1, ..., p_m)$$
 and $q = (q_1, ..., q_m)$.

For every ultrametric ball *B* in K^m we consider the sets $B \cap \gamma$ and $B^c \cap \gamma$. If both sets are nonempty, then we obtain cuts on the curve.

Assume that we have chosen proper coordinates and we have an embedding of γ in K^m . The vector space K^m is an ultrametric space with the ultrametric distance:

$$d(p,q) = \min\{v(p_1 - q_1), ..., v(p_m - q_m)\} = \frac{1}{2}v(\sum(p_i - q_i)^2),$$

for
$$p = (p_1, ..., p_m)$$
 and $q = (q_1, ..., q_m)$.

For every ultrametric ball *B* in K^m we consider the sets $B \cap \gamma$ and $B^c \cap \gamma$. If both sets are nonempty, then we obtain cuts on the curve.

Theorem

Every ball cut on γ is induced by some ultrametric ball in K^m .

Take two cuts C_1 and C_2 on γ .

◆□▶★@▶★≧▶★≧▶ 差 のへ(

Katarzyna Kuhlmann (joint work with P. Koprowski) Orderings and R-places of function fields University of Silesia, Katowice, Poland

 \mathbb{R} - places of *F*

Take two cuts C_1 and C_2 on γ .

Assume that the corresponding orderings P_1 and P_2 of F determine different \mathbb{R} -places: $\lambda(P_1)$ and $\lambda(P_2)$.

Katarzyna Kuhlmann (joint work with P. Koprowski) Orderings and R-places of function fields University of Silesia, Katowice, Poland

\mathbb{R} - places of *F*

Take two cuts C_1 and C_2 on γ .

Assume that the corresponding orderings P_1 and P_2 of F determine different \mathbb{R} -places: $\lambda(P_1)$ and $\lambda(P_2)$.

Then there is $x \in F \setminus K$ such that $\lambda(P_1)(x) > 0$ and $\lambda(P_2)(x) < 0$.

\mathbb{R} - places of *F*

Take two cuts C_1 and C_2 on γ .

Assume that the corresponding orderings P_1 and P_2 of F determine different \mathbb{R} -places: $\lambda(P_1)$ and $\lambda(P_2)$.

Then there is $x \in F \setminus K$ such that $\lambda(P_1)(x) > 0$ and $\lambda(P_2)(x) < 0$.

Thus $\lambda(P_1) \mid_{K(x)} \neq \lambda(P_2) \mid_{K(x)}$ and therefore $res_x(C_1) \nsim res_x(C_2)$.

Katarzyna Kuhlmann (joint work with P. Koprowski)

Orderings and R-places of function fields

University of Silesia, Katowice, Poland

イロト イポト イヨト イヨト

Theorem

Let C_1 and C_2 be two ball cuts on γ . The corresponding orderings determine the same \mathbb{R} -place of F iff for every $x \in F \setminus K$ the cuts $res_x(C_1)$ and $res_x(C_2)$ are ball cuts of the same ultrametric ball.

Thank you very much for your attention!

Katarzyna Kuhlmann (joint work with P. Koprowski) Orderings and \mathbb{R} -places of function fields

э University of Silesia, Katowice, Poland

A B > A
 B > A
 B
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A