Dp-minimal ordered fields

Franziska Jahnke

joint work with Pierre Simon (Lyon 1) and Erik Walsberg (UCLA)

WWU Münster

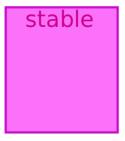
13.10.15

Franziska Jahnke (WWU Münster)

Dp-minimal ordered fields

13.10.15 1 / 10

(日) (同) (三) (三)



Franziska Jahnke (WWU Münster)

 Ⅰ
 Ⅰ

 </t

(日) (同) (三) (三)

simple	
stable	NIP

Franziska Jahnke (WWU Münster)

 ■
 ■
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •

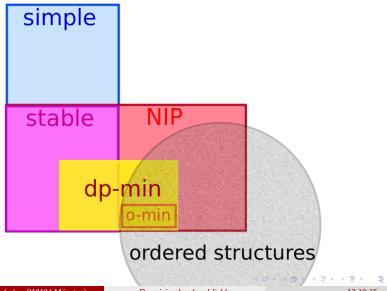
<ロ> (日) (日) (日) (日) (日)

sim	ple		
sta	ble	NIF	
	dp-min o-min		

Franziska Jahnke (WWU Münster)

 ■
 ■
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >



Franziska Jahnke (WWU Münster)

Dp-minimal ordered fields

13.10.15 2 / 10

Fact: o-minimal \Rightarrow weakly o-minimal \Rightarrow dp-minimal \Rightarrow NIP.

イロト イポト イヨト イヨト

Fact: o-minimal \Rightarrow weakly o-minimal \Rightarrow dp-minimal \Rightarrow NIP.

Conjecture: On NIP fields

Let K be a field such that Th(K) has NIP in $\mathcal{L}_{ring} = \{+, \cdot, 0, 1\}$.

イロト イポト イヨト イヨト

Fact: o-minimal \Rightarrow weakly o-minimal \Rightarrow dp-minimal \Rightarrow NIP.

Conjecture: On NIP fields

Let K be a field such that Th(K) has NIP in $\mathcal{L}_{ring} = \{+, \cdot, 0, 1\}$. Then K is separably closed, real closed or admits a non-trivial definable valuation.

イロト イポト イヨト イヨト

Fact: o-minimal \Rightarrow weakly o-minimal \Rightarrow dp-minimal \Rightarrow NIP.

Conjecture: On NIP fields

Let K be a field such that Th(K) has NIP in $\mathcal{L}_{ring} = \{+, \cdot, 0, 1\}$. Then K is separably closed, real closed or admits a non-trivial definable valuation.

We know so far:

• o-minimal ordered fields are real closed (Pillay, Steinhorn, 1984).

イロト イ団ト イヨト イヨト 三耳

Fact: o-minimal \Rightarrow weakly o-minimal \Rightarrow dp-minimal \Rightarrow NIP.

Conjecture: On NIP fields

Let K be a field such that Th(K) has NIP in $\mathcal{L}_{ring} = \{+, \cdot, 0, 1\}$. Then K is separably closed, real closed or admits a non-trivial definable valuation.

We know so far:

- o-minimal ordered fields are real closed (Pillay, Steinhorn, 1984).
- weakly o-minimal ordered fields are real closed (Marker, Macpherson, Steinhorn, 2000).

イロト イポト イヨト イヨト 二日

Fact: o-minimal \Rightarrow weakly o-minimal \Rightarrow dp-minimal \Rightarrow NIP.

Conjecture: On NIP fields

Let K be a field such that Th(K) has NIP in $\mathcal{L}_{ring} = \{+, \cdot, 0, 1\}$. Then K is separably closed, real closed or admits a non-trivial definable valuation.

We know so far:

- o-minimal ordered fields are real closed (Pillay, Steinhorn, 1984).
- weakly o-minimal ordered fields are real closed (Marker, Macpherson, Steinhorn, 2000).
- every dp-minimal ordered field is either real closed or admits a non-trivial definable valuation (JSW, 2015)

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Fact: o-minimal \Rightarrow weakly o-minimal \Rightarrow dp-minimal \Rightarrow NIP.

Conjecture: On NIP fields

Let K be a field such that Th(K) has NIP in $\mathcal{L}_{ring} = \{+, \cdot, 0, 1\}$. Then K is separably closed, real closed or admits a non-trivial definable valuation.

We know so far:

- o-minimal ordered fields are real closed (Pillay, Steinhorn, 1984).
- weakly o-minimal ordered fields are real closed (Marker, Macpherson, Steinhorn, 2000).
- every dp-minimal ordered field is either real closed or admits a non-trivial definable valuation (JSW, 2015)
- every dp-minimal field is either separably closed, real closed or admits a non-trivial definable valuation (Will Johnson, 2015).

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Definition:

• Let \mathcal{M} be an \mathcal{L} -structure.

<ロ> (日) (日) (日) (日) (日)

Definition:

 \bullet Let ${\mathcal M}$ be an ${\mathcal L}\text{-structure}.$ We say that ${\mathcal M}$ has an ICT-pattern if

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition:

 Let *M* be an *L*-structure. We say that *M* has an ICT-pattern if there are *L*-formulae φ(x, ȳ) and ψ(x, ȳ) and sequences (ā_i)_{i∈ω} and (b_j)_{j∈ω} in *M*

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition:

• Let \mathcal{M} be an \mathcal{L} -structure. We say that \mathcal{M} has an ICT-pattern if there are \mathcal{L} -formulae $\varphi(x, \bar{y})$ and $\psi(x, \bar{y})$ and sequences $(\bar{a}_i)_{i \in \omega}$ and $(\bar{b}_j)_{j \in \omega}$ in \mathcal{M} such that for all $i, j \in \omega$ the type

$$arphi(x,ar{a}_i)\wedge\psi(x,ar{b}_j)\wedgeigwedge_{k
eq i}
eg\varphi(x,ar{a}_k)\wedgeigwedge_{l
eq j}
eg\psi(x,ar{b}_l)$$

is consistent.

イロト 不得下 イヨト イヨト

Definition:

• Let \mathcal{M} be an \mathcal{L} -structure. We say that \mathcal{M} has an ICT-pattern if there are \mathcal{L} -formulae $\varphi(x, \bar{y})$ and $\psi(x, \bar{y})$ and sequences $(\bar{a}_i)_{i \in \omega}$ and $(\bar{b}_j)_{j \in \omega}$ in \mathcal{M} such that for all $i, j \in \omega$ the type

$$arphi(x,ar{a}_i)\wedge\psi(x,ar{b}_j)\wedgeigwedge_{k
eq i}
eg\varphi(x,ar{a}_k)\wedgeigwedge_{l
eq j}
eg\psi(x,ar{b}_l)$$

is consistent.

• A theory is dp-minimal if no $\mathcal{M} \models T$ has an ICT-pattern.

イロト 不得下 イヨト イヨト

Definition:

 Let M be an L-structure. We say that M has an ICT-pattern if there are L-formulae φ(x, ȳ) and ψ(x, ȳ) and sequences (ā_i)_{i∈ω} and (b_j)_{j∈ω} in M such that for all i, j ∈ ω the type

$$arphi(x,ar{a}_i)\wedge\psi(x,ar{b}_j)\wedgeigwedge_{k
eq i}
eg\varphi(x,ar{a}_k)\wedgeigwedge_{l
eq j}
eg\psi(x,ar{b}_l)$$

is consistent.

• A theory is dp-minimal if no $\mathcal{M} \models T$ has an ICT-pattern.

Example: Any o-minimal theory is dp-minimal.

・ロト ・ 同ト ・ ヨト ・ ヨト - -

Definition:

• Let \mathcal{M} be an \mathcal{L} -structure. We say that \mathcal{M} has an ICT-pattern if there are \mathcal{L} -formulae $\varphi(x, \bar{y})$ and $\psi(x, \bar{y})$ and sequences $(\bar{a}_i)_{i \in \omega}$ and $(\bar{b}_j)_{j \in \omega}$ in \mathcal{M} such that for all $i, j \in \omega$ the type

$$arphi(x,ar{a}_i)\wedge\psi(x,ar{b}_j)\wedgeigwedge_{k
eq i}
eg\varphi(x,ar{a}_k)\wedgeigwedge_{l
eq j}
eg\psi(x,ar{b}_l)$$

is consistent.

(

• A theory is dp-minimal if no $\mathcal{M} \models T$ has an ICT-pattern.

Example: Any o-minimal theory is dp-minimal. In particular, the \mathcal{L}_{ring} -theory of \mathbb{R} is dp-minimal.

Franziska Jahnke (WWU Münster)

Dp-minimal ordered fields

13.10.15 4 / 10

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

Fact (Chernikov-Simon)

Let (K, v) be a henselian valued field of equicharacteristic 0. Then

 $\operatorname{Th}(K, v)$ is dp-minimal $\iff \operatorname{Th}(Kv)$ and $\operatorname{Th}(vK)$ are dp-minimal.

- 本間 と 本語 と 本語 と

Fact (Chernikov-Simon)

Let (K, v) be a henselian valued field of equicharacteristic 0. Then

 $\operatorname{Th}(K, v)$ is dp-minimal $\iff \operatorname{Th}(Kv)$ and $\operatorname{Th}(vK)$ are dp-minimal.

Proposition 1 (JSW)

Let Γ be an ordered abelian group. Then, the $\mathcal{L}_{\mathrm{oag}}\text{-theory }\mathrm{Th}(\Gamma)$ is dp-minimal

Franziska Jahnke (WWU Münster)

13.10.15 5 / 10

イロト イポト イヨト イヨト 二日

Fact (Chernikov-Simon)

Let (K, v) be a henselian valued field of equicharacteristic 0. Then

 $\operatorname{Th}(K, v)$ is dp-minimal $\iff \operatorname{Th}(Kv)$ and $\operatorname{Th}(vK)$ are dp-minimal.

Proposition 1 (JSW)

Let Γ be an ordered abelian group. Then, the \mathcal{L}_{oag} -theory $Th(\Gamma)$ is dp-minimal if and only if the index $[\Gamma : p\Gamma]$ is finite for all primes p.

Franziska Jahnke (WWU Münster)

13.10.15 5 / 10

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Fact (Chernikov-Simon)

Let (K, v) be a henselian valued field of equicharacteristic 0. Then

 $\operatorname{Th}(K, v)$ is dp-minimal $\iff \operatorname{Th}(Kv)$ and $\operatorname{Th}(vK)$ are dp-minimal.

Proposition 1 (JSW)

Let Γ be an ordered abelian group. Then, the \mathcal{L}_{oag} -theory $Th(\Gamma)$ is dp-minimal if and only if the index $[\Gamma : p\Gamma]$ is finite for all primes p.

We get: If $[\Gamma : p\Gamma]$ is finite for all p, then $\operatorname{Th}(\mathbb{R}((\Gamma)))$ is dp-minimal (in $\mathcal{L}_{\operatorname{val}}$ and hence also in $\mathcal{L}_{\operatorname{ring}}$ and $\mathcal{L}_{\operatorname{of}}$).

Franziska Jahnke (WWU Münster)

13.10.15 5 / 10

イロト 不得 トイヨト イヨト 二日

Fact (Guingona)

Let (K, \leq) be a dp-minimal ordered field. Then K is (topologically) closed in its real closure.

A B M A B M

Fact (Guingona)

Let (K, \leq) be a dp-minimal ordered field. Then K is (topologically) closed in its real closure.

Proposition 2 (JSW)

Let (K, \leq) be an ordered field. Then either K is dense in its real closure, or K admits an \mathcal{L}_{of} -definable, non-trivial valuation.

Fact (Guingona)

Let (K, \leq) be a dp-minimal ordered field. Then K is (topologically) closed in its real closure.

Proposition 2 (JSW)

Let (K, \leq) be an ordered field. Then either K is dense in its real closure, or K admits an \mathcal{L}_{of} -definable, non-trivial valuation.

(See board for proof.)

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Fact (Guingona)

Let (K, \leq) be a dp-minimal ordered field. Then K is (topologically) closed in its real closure.

Proposition 2 (JSW)

Let (K, \leq) be an ordered field. Then either K is dense in its real closure, or K admits an \mathcal{L}_{of} -definable, non-trivial valuation.

We get: Every dp-minimal ordered field is either real closed or admits a non-trivial \mathcal{L}_{of} -definable valuation.

イロト 不得下 イヨト イヨト 二日

Lemma (JSW)

Let (K, v) be a dp-minimal valued field. Then K is (topologically) closed in its henselisation.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lemma (JSW)

Let (K, v) be a dp-minimal valued field. Then K is (topologically) closed in its henselisation.

Proposition 3 (JSW)

Let (K, v) be a dp-minimal valued field. Then v is henselian.

Franziska Jahnke (WWU Münster)

13.10.15 7 / 10

イロト 不得下 イヨト イヨト 二日

Lemma (JSW)

Let (K, v) be a dp-minimal valued field. Then K is (topologically) closed in its henselisation.

Proposition 3 (JSW)

Let (K, v) be a dp-minimal valued field. Then v is henselian.

In fact, we even show that K admits an \mathcal{L}_{ring} -definable non-trivial henselian valuation.

イロト 不得 トイヨト イヨト 二日

Lemma (JSW)

Let (K, v) be a dp-minimal valued field. Then K is (topologically) closed in its henselisation.

Proposition 3 (JSW)

Let (K, v) be a dp-minimal valued field. Then v is henselian.

In fact, we even show that K admits an $\mathcal{L}_{\mathrm{ring}}\text{-}\mathsf{definable}$ non-trivial henselian valuation.

We get: Every dp-minimal ordered field is either real closed or admits a non-trivial definable henselian valuation.

Franziska Jahnke (WWU Münster)

13.10.15 7 / 10

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ - 画 - のへ⊙

The main result

Theorem (JSW)

Let K be an ordered field. Then, the \mathcal{L}_{of} -theory $Th(K, \leq)$ is dp-minimal if and only if

- 4 同 6 4 日 6 4 日 6

The main result

Theorem (JSW)

Let K be an ordered field. Then, the \mathcal{L}_{of} -theory $\mathrm{Th}(K,\leq)$ is dp-minimal if and only if

$$\mathcal{K} \equiv \mathbb{R}((\Gamma))$$
 (in \mathcal{L}_{ring})

for some ordered abelian group Γ with $[\Gamma : p\Gamma]$ finite for all primes p.

Franziska Jahnke (WWU Münster)

13.10.15 8 / 10

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The main result

Theorem (JSW)

Let K be an ordered field. Then, the \mathcal{L}_{of} -theory $\mathrm{Th}(K,\leq)$ is dp-minimal if and only if

$$\mathcal{K} \equiv \mathbb{R}((\Gamma))$$
 (in \mathcal{L}_{ring})

for some ordered abelian group Γ with $[\Gamma : p\Gamma]$ finite for all primes p.

Thank you for your attention!

Franziska Jahnke (WWU Münster)

13.10.15 8 / 10

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

References

[CS] Artem Chernikov and Pierre Simon.

Henselian valued fields and inp-minimality, In preparation, 2015.

[Gui] Vincent Guingona.

On vc-minimal fields and dp-smallness. Archive for Math. Logic, 53(5–6):503–517, 2104.

[JSW] Franziska Jahnke, Pierre Simon and Erik Walsberg.

Dp-minimal valued fields, Preprint, available on ArXiv, 2015.

[J] Will Johnson. Dp-minimal valued fields, Preprint, available on ArXiv, 2015.

[MMS] Dugald Macpherson, David Marker and Charles Steinhorn.

Weakly o-minimal structures and real closed fields, Trans. Amer. Math. Soc., 352:5435–5483, 2000.

[OU] Alf Onshuus and Alexander Usvyatsov.
 On dp-minimality, strong dependence and weight.
 J. Symbolic Logic, 76(3):737–758, 2011.

[PS] Anand Pillay and Charles Steinhorn. Definable sets in ordered structures, Bulletin of the AMS, 11(1):159–162, 1984.

-

Image: A match a ma

Dp-minimal fields

Theorem (Will Johnson):

- Let (K, v) be a henselian defectless valued field with residue field k and value group Γ . Suppose
 - k ⊨ ACF_p or k is elementarily equivalent to a local field of characteristic 0.
 - for every n, $[\Gamma : n\Gamma]$ is finite.
 - if k has characteristic p, and $\gamma \in [-v(p), v(p)]$ then $\gamma \in p\Gamma$. Here [-v(p), v(p)] denotes Γ if K has characteristic p.
 - Then (K, v) is dp-minimal as a valued field, and the theory of (K, v) is completely determined by the theories of k and Γ (or k and $(\Gamma, v(p))$ in mixed characteristic).
- Let K be a sufficiently saturated dp-minimal field. Then there is some valuation on K satisfying the conditions above.

イロト 不得 トイヨト イヨト 二日