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Introduction and Motivation

What’s known

Fact: o-minimal ⇒ weakly o-minimal ⇒ dp-minimal ⇒ NIP.

Conjecture: On NIP fields

Let K be a field such that Th(K ) has NIP in Lring = {+, ·, 0, 1}. Then K
is separably closed, real closed or admits a non-trivial definable valuation.

We know so far:

o-minimal ordered fields are real closed (Pillay, Steinhorn, 1984).

weakly o-minimal ordered fields are real closed (Marker, Macpherson,
Steinhorn, 2000).

every dp-minimal ordered field is either real closed or admits a
non-trivial definable valuation (JSW, 2015)

every dp-minimal field is either separably closed, real closed or admits
a non-trivial definable valuation (Will Johnson, 2015).
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Dp-minimal structures

Dp-minimality

Definition:

Let M be an L-structure.

We say that M has an ICT-pattern if
there are L-formulae ϕ(x , ȳ) and ψ(x , ȳ) and sequences (āi )i∈ω and
(b̄j)j∈ω in M such that for all i , j ∈ ω the type

ϕ(x , āi ) ∧ ψ(x , b̄j) ∧
∧
k 6=i

¬ϕ(x , āk) ∧
∧
l 6=j

¬ψ(x , b̄l)

is consistent.

A theory is dp-minimal if no M |= T has an ICT-pattern.

Example: Any o-minimal theory is dp-minimal. In particular, the
Lring-theory of R is dp-minimal.
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ϕ(x , āi ) ∧ ψ(x , b̄j) ∧
∧
k 6=i

¬ϕ(x , āk) ∧
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Dp-minimal structures

Henselian fields and dp-minimality

Fact (Chernikov-Simon)

Let (K , v) be a henselian valued field of equicharacteristic 0. Then

Th(K , v) is dp-minimal⇐⇒ Th(Kv) and Th(vK ) are dp-minimal.

Proposition 1 (JSW)

Let Γ be an ordered abelian group. Then, the Loag-theory Th(Γ) is
dp-minimal if and only if the index [Γ : pΓ] is finite for all primes p.

We get: If [Γ : pΓ] is finite for all p, then Th(R((Γ))) is dp-minimal
(in Lval and hence also in Lring and Lof).
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Dp-minimal structures

Ordered fields, dp-minimality and definable valuations

Fact (Guingona)

Let (K ,≤) be a dp-minimal ordered field. Then K is (topologically) closed
in its real closure.

Proposition 2 (JSW)

Let (K ,≤) be an ordered field. Then either K is dense in its real closure,
or K admits an Lof -definable, non-trivial valuation.

(See board for proof.)
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Dp-minimal structures

Dp-minimal valued fields

Lemma (JSW)

Let (K , v) be a dp-minimal valued field. Then K is (topologically) closed
in its henselisation.

Proposition 3 (JSW)

Let (K , v) be a dp-minimal valued field. Then v is henselian.

In fact, we even show that K admits an Lring-definable non-trivial
henselian valuation.

We get: Every dp-minimal ordered field is either real closed or admits a
non-trivial definable henselian valuation.
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The classification

The main result

Theorem (JSW)

Let K be an ordered field. Then, the Lof -theory Th(K ,≤) is dp-minimal if
and only if

K ≡ R((Γ)) (in Lring)

for some ordered abelian group Γ with [Γ : pΓ] finite for all primes p.

Thank you for your attention!
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The classification
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The classification

Dp-minimal fields

Theorem (Will Johnson):
1 Let (K , v) be a henselian defectless valued field with residue field k

and value group Γ. Suppose

k |= ACFp or k is elementarily equivalent to a local field of
characteristic 0.
for every n, [Γ : nΓ] is finite.
if k has characteristic p, and γ ∈ [−v(p), v(p)] then γ ∈ pΓ. Here
[−v(p), v(p)] denotes Γ if K has characteristic p.

Then (K , v) is dp-minimal as a valued field, and the theory of (K , v)
is completely determined by the theories of k and Γ (or k and
(Γ, v(p)) in mixed characteristic).

2 Let K be a sufficiently saturated dp-minimal field. Then there is some
valuation on K satisfying the conditions above.
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