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What's known
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Steinhorn, 2000).

@ every dp-minimal ordered field is either real closed or admits a
non-trivial definable valuation (JSW, 2015)

@ every dp-minimal field is either separably closed, real closed or admits
a non-trivial definable valuation (Will Johnson, 2015).
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Dp-minimality

Definition:
@ Let M be an L-structure.
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Definition:

o Let M be an L-structure. We say that M has an ICT-pattern if

there are L-formulae ¢(x,y) and ¥(x,¥) and sequences (3;);c,, and

(bj)jew in M such that for all i, € w the type

<)0(X7 a_l) A %Z’(X, Ej) A /\ _‘SD(X» ék) A /\ _'1#()(7 E/)
k#i I#j

is consistent.
@ A theory is dp-minimal if no M |= T has an ICT-pattern.

Example: Any o-minimal theory is dp-minimal. In particular, the
Lring-theory of R is dp-minimal.
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Dp-minimal structures

Henselian fields and dp-minimality

Fact (Chernikov-Simon)

Let (K, v) be a henselian valued field of equicharacteristic 0. Then

Th(K, v) is dp-minimal <= Th(Kv) and Th(vK) are dp-minimal.
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Fact (Chernikov-Simon)

Let (K, v) be a henselian valued field of equicharacteristic 0. Then

Th(K, v) is dp-minimal <= Th(Kv) and Th(vK) are dp-minimal.

v

Proposition 1 (JSW)

Let I' be an ordered abelian group. Then, the Lyag-theory Th(I) is
dp-minimal if and only if the index [I" : pI'] is finite for all primes p.

We get: If [ : pl] is finite for all p, then Th(R((I"))) is dp-minimal
(in Lya and hence also in Lying and Log).
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Fact (Guingona)

Let (K, <) be a dp-minimal ordered field. Then K is (topologically) closed
in its real closure.

v

Proposition 2 (JSW)

Let (K, <) be an ordered field. Then either K is dense in its real closure,
or K admits an L,¢-definable, non-trivial valuation.

(See board for proof.)
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Dp-minimal structures

Ordered fields, dp-minimality and definable valuations

Fact (Guingona)

Let (K, <) be a dp-minimal ordered field. Then K is (topologically) closed
in its real closure.

v

Proposition 2 (JSW)

Let (K, <) be an ordered field. Then either K is dense in its real closure,
or K admits an L.¢-definable, non-trivial valuation.

We get: Every dp-minimal ordered field is either real closed or admits a
non-trivial L.¢-definable valuation.

Franziska Jahnke (WWU Miinster) Dp-minimal ordered fields 13.10.15 6 /10
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Lemma (JSW)

Let (K, v) be a dp-minimal valued field. Then K is (topologically) closed
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Let (K, v) be a dp-minimal valued field. Then K is (topologically) closed
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Proposition 3 (JSW)

Let (K, v) be a dp-minimal valued field. Then v is henselian.

In fact, we even show that K admits an Li,s-definable non-trivial
henselian valuation.

We get: Every dp-minimal ordered field is either real closed or admits a
non-trivial definable henselian valuation.
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The classification

The main result

Theorem (JSW)

Let K be an ordered field. Then, the Lq-theory Th(K, <) is dp-minimal if
and only if

K= R((I’)) (1n Ering)

for some ordered abelian group I with [I" : pI] finite for all primes p.

Thank you for your attention!
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The classification

Dp-minimal fields

Theorem (Will Johnson):

O Let (K, v) be a henselian defectless valued field with residue field k
and value group I'. Suppose

o k = ACF, or k is elementarily equivalent to a local field of
characteristic 0.
o for every n, [ : nl] is finite.
o if k has characteristic p, and v € [—v(p), v(p)] then v € pl'. Here
[=v(p), v(p)] denotes T if K has characteristic p.
Then (K, v) is dp-minimal as a valued field, and the theory of (K, v)
is completely determined by the theories of k and ' (or k and
(I, v(p)) in mixed characteristic).

@ Let K be a sufficiently saturated dp-minimal field. Then there is some
valuation on K satisfying the conditions above.
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