Supertropical algebra and representations

Zur Izhakian

October 2015

A simplicial complex (s.c.) is a pair $\mathcal{S} := (E, \mathcal{H})$, with E a finite set and $\mathcal{H} \subseteq Pw(E)$, that satisfies the axioms:

A. \mathcal{H} is nonempty,

B. $Y \subseteq X, X \in \mathcal{H} \Rightarrow Y \in \mathcal{H}$.

A **basis** is a maximal simplex (with respect to inclusion).

A matroid $\mathcal{M} := (E, \mathcal{H})$ is s.c. that admits the extra axiom: EX. If $X, Y \in \mathcal{H}$ and |X| = |Y| + 1, then there exists $x \in X \setminus Y$ such that $Y \cup \{x\}$ is in \mathcal{H} .

A realizations of a s.c. is an embedding $\varphi : E \to \mathcal{M}$, mapping E to elements of a module \mathcal{M} , which respects independence:

 $\varphi(X)$ is (linearly) independent $\Leftrightarrow X \in \mathcal{H}, \quad \forall X \subseteq E.$

A matroid \mathcal{M} is **field-realizable** if it has a realization by a vector space; \mathcal{M} is **regular** if it is realizable over any field.

Not all matroids are field-realizable, for example the direct sum $F^-\oplus F$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

of the non-Fano and the Fano matroid is not field-realizable.

Tropical mathematics

A semiring $(R, +, \cdot)$ is a structure such that (R^{\times}, \cdot) is a monoid and (R, +) is a commutative monoid, with distributivity of multiplication over addition on both sides.

Tropical mathematics is customarily developed over the **max-plus** semiring $(\overline{\mathbb{R}}, +, \cdot)$, $\overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty\}$, whose addition and multiplication are maximum and summation, respectively:

$$a+b := \max\{a,b\}, \quad a \cdot b := a + b,$$

where $\mathbb{O} := -\infty$, $\mathbb{1} := 0$.

- lack of additive inverse,
- $\overline{\mathbb{R}}$ is idempotent, i.e. a + a = a for any a.

Combinatorial approach

The notion of "vanishing" of an equation

$$q := q_1 + q_2 + \dots + q_m$$

is replaced by taking elements on which the maximum of q is attained simultaneously by at least two different terms.

For example, a **tropical hypersurface** is the **corner locus** of a tropical polynomial

$$f := \sum_{\mathbf{i} \in \Omega} \alpha_{\mathbf{i}} \lambda_1^{i_1} \cdots \lambda_m^{i_m},$$

i.e., the domain of nonsmoothness the convex piecewise linear function $\tilde{f}:\mathbb{R}^{(m)}\to\mathbb{R}:$

$$\tilde{f}(a_1,\ldots,a_m) = \max_{\mathbf{i}\in\Omega} \{i_1a_1 + \cdots + i_ma_m + \alpha_{\mathbf{i}}\}.$$

Supertropical algebra

A supertropical semiring is a semiring $R := (R, \mathcal{G}_0, \nu)$ with:

 \blacktriangleright a distinguished ideal $\mathcal{G}_{\mathbb{O}},$ called the **ghost ideal**, and

▶ a semiring projection $\nu : R \to \mathcal{G}_0$, called the **ghost map**, satisfying the axioms (writing a^{ν} for $\nu(a)$):

Supertropicality:
$$a + b = a^{\nu}$$
 if $a^{\nu} = b^{\nu}$;
Bipotence: $a + b \in \{a, b\}$ if $a^{\nu} \neq b^{\nu}$.

A supertropical semifield $F := (F, \mathcal{G}_0, \nu)$ is a supertropical semiring for which:

- $\mathcal{T} := F \setminus \mathcal{G}_{\mathbb{O}}$ is an Ablian group (called the **tangible part**);
- the restriction $\nu|_{\mathcal{T}}: \mathcal{T} \to \mathcal{G}$ is onto.

Suppose G = (G, *, <) is an abelian ordered group, s.t. $ca > cb \Rightarrow a > b$. Define the set $F := G \cup \{0\} \cup G^{\nu}$, ordered as

$$a^{\nu} >_{\nu} a >_{\nu} b^{\nu} >_{\nu} b >_{\nu} 0, \qquad \text{for any } a > b \text{ in } G.$$

Set $\mathcal{G}_{\mathbb{O}} := G^{\nu} \cup \{\mathbb{O}\}$, and let $\nu : F \to \mathcal{G}_{\mathbb{O}}$ be the ghost map given by $a \mapsto a^{\nu}$. $(F, \mathcal{G}_{\mathbb{O}}, \nu)$ is a supertropical semifield with operations $(x, y \in F)$: $\blacktriangleright x + y := \begin{cases} \max\{x, y\} & \text{if } x^{\nu} \neq y^{\nu} \\ x^{\nu} & \text{else} \end{cases}$ $\blacktriangleright a \cdot b := a * b, \qquad a^{\nu} \cdot b = a \cdot b^{\nu} = a^{\nu} \cdot b^{\nu} := (a * b)^{\nu}, \\ \mathbb{O} \cdot x = x \cdot \mathbb{O} = \mathbb{O}. \end{cases}$

The superboolean semifield SB is the finite supertropical semifield defined over $\{1, 0, 1^{\nu}\}$, equipped with the total order

$$1^{\nu} >_{\nu} 1 >_{\nu} 0,$$

and endowed with the binary operations

+	0	1	1^{ν}	•	0	1	1^{ν}
0	0	1	1^{ν}	0	0	0	0
1	1	1^{ν}	1^{ν}	1	0	1	1^{ν}
1^{ν}	1^{ν}	1^{ν}	1^{ν}	1^{ν}	0	1^{ν}	1^{ν}

that modify the standard operations of the boolean semiring $(\mathbb{B},\wedge,\vee).$

Rmk. SB provides a type of 3-value logic, associated with a commutative associative algebra.

Philosophy

A supertropical semiring is not idempotent, i.e.

$$a + a = a + \dots + a = a^{\nu}.$$

Along all our development:

Namely, the ghost ideal $\mathcal{G}_{\mathbb{O}}$ plays the role of the zero element in classical mathematics.

Def. The root set of $f \in F[\lambda_1, \ldots, \lambda_n]$ is defined as

$$Z(f) = \{a = (a_1, \dots, a_n) \in F^{(n)} \mid f(a) \in \mathcal{G}_{\mathbb{Q}}\},\$$

a root $a \in \mathcal{T}_{\mathbb{Q}}^{(n)}$ is called tangible.

The geometry associated to this theory is polyhedral geometry.

Ex. $Z(f) \cap \mathcal{T}^{(2)}$ of $f = \lambda_1^2 \lambda_2 + \lambda_1 \lambda_2^2 + \alpha \lambda_1 \lambda_2 + \beta \in \mathbb{T}[\lambda_1, \lambda_2]$:

Tangible roots of tangible polynomials correspond to the corner loci of polynomials over the max-plus algebra.

This approach provides new examples of algebraic sets which were previously inaccessible such as algebraic subsets of codimension 0.

Matrices and digraphs

Matrices over semifields are adjacency matrices of digraphs:

Digraphs

Weighted digraphs

Weighted digraph + double edges

Boolean matrices

 $\left(\begin{array}{cc}1&1\\0&1\end{array}\right)$

Max-plus matrices

Supertropical matrices

Over this setting, algebraic notions take combinatorial meanings and digraphs are a major computational tool in tropical matrix theory.

Matrix algebra

The **permanent** of a matrix $A = (a_{i,j})$ is defined as

$$\operatorname{per}(A) = \sum_{\pi \in S_n} a_{1,\pi(1)} \cdots a_{n,\pi(n)}.$$

The **minor** $A'_{i,j}$ is obtained by deleting the *i* row and *j* column of *A*.

The **adjoint** matrix adj(A) is the transpose of the matrix $(a'_{i,j})$, where $a'_{i,j} = per(A'_{i,j})$.

Def. A matrix A is nonsingular if per(A) is tangible; otherwise, when $per(A) \in \mathcal{G}_0$, A is called singular.

The permanent is not multiplicative!

Ex. Take the nonsingular matrix

$$A = \begin{pmatrix} 0 & 0 \\ 1 & 2 \end{pmatrix} \quad \text{for which} \quad A^2 = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}.$$

Then $per(A)^2 = 2^2 = 4$, while $per(A^2) = 5^{\nu}$. So $per(AB) \neq per(A) per(B)$.

Thm. For any matrices A, B over a supertropical semifield

$$per(AB) = per(A) per(B) + ghost;$$

namely $per(AB) \ge_{\nu} per(A) per(B)$, where per(AB) = per(A) per(B) whenever AB is nonsingular.

Def. A subset $W = {\mathbf{v}_1, \dots, \mathbf{v}_m} \subset F^{(n)}$ is dependent if there is a finite sum $\sum \alpha_i \mathbf{v}_i \in \mathcal{G}_0^{(n)}$, with each $\alpha_i \in \mathcal{T}_0$, but not all 0; otherwise W is called independent.

Tropical dependence does not coincide with spanning; for example the vectors

$$\mathbf{v}_1=(\mathbb{1},\mathbb{1},\mathbb{0}),\quad \mathbf{v}_2=(\mathbb{1},\mathbb{0},\mathbb{1}),\quad \text{and} \ \mathbf{v}_3=(\mathbb{0},\mathbb{1},\mathbb{1}),$$

are dependent, i.e. $\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3 \in \mathcal{G}_0^{(3)}$, but none of them can be written in terms of the others.

Def. The row (column) rank of a matrix A is the maximal number of independent rows (column) of A.

Thm. The rank of a matrix A is equal the maximal k such that A has a nonsingular $k \times k$ submatrix.

Cor. A matrix is nonsingular iff its rows (columns) of are independent.

Cor. Any n + 1 vectors in $F^{(n)}$ are dependent.

Def. A quasi-identity matrix \mathcal{I} is a nonsingular (multiplicatively) idempotent matrix, i.e. $\mathcal{I} = \mathcal{I}^2$.

Accordingly, $per(\mathcal{I}) = 1$, the diagonal entries of \mathcal{I} are all 1, while \mathcal{I} is ghost off the diagonal. (The identity matrix I is clearly quasi-identity.)

Def. A matrix B is a quasi-inverse of a matrix A if both AB and BA are quasi-identities; A is quasi-invertible if it has a quasi-inverse.

Thm. A matrix A is quasi-invertible iff A is nonsingular, in this case $A^{\nabla} := \frac{\operatorname{adj}(A)}{\operatorname{per}(A)}$ is the canonical quasi-inverse of A.

Realizations of simplicial complexes

Recall that the superboolean semifield is the finite supertropical semifield $SB := \{0, 1, 1^{\nu}\}.$

Any $m \times n$ supertropical matrix A generates a simplicial complex $\mathcal{H}(A) := (\operatorname{col}(A), \mathcal{H}(A))$ whose simplices are determined by the independent columns of A.

Ex. The matrix

$$A := \begin{pmatrix} 1 & 0 & 1 & 1^{\nu} \\ 0 & 1 & 1 & 1 \\ \hline a & b & c & d \end{pmatrix}$$

determines a simplicial complex (which is not a matroid).

A superboolean-realization of a s.c. $\mathcal{S} := (E, \mathcal{H})$ is a bijective map $\varphi : E \to \operatorname{col}(A)$ that respects simplices.

Thm. Any simplicial complex is superboolean-representable.

Lem. A $k \times k$ matrix $W_k \in M_k(\mathbb{SB})$ is nonsingular iff by independently permuting columns and rows it can be rearranged to the triangular form

$$A' := \begin{pmatrix} 1 & 0 & \cdots & 0 \\ * & \ddots & \ddots & \vdots \\ \vdots & \ddots & 1 & 0 \\ * & \cdots & * & 1 \end{pmatrix}$$

A $k \times k$ nonsingular submatrix W_k is called k-witness. A k-marker is a row of length k having a single 1-entry and all its other entries are 0.

- Any k-witness contains a k-marker.
- ► Any subset of k independent columns contains a k-witness.

Proof. Naive construction of a superboolean realization.

Let $\mathcal{B}_1, \ldots, \mathcal{B}_m$, $|\mathcal{B}_i| := k_i$, be the bases of $\mathcal{S} := (E, \mathcal{H})$.

• Start with a $k_1 \times n$ matrix

$$A_1 := \frac{\left| \mathbf{W}_{k_1}(\mathcal{B}_1) \right| \quad (1^{\nu})}{\mathcal{B}_1}$$

whose k_1 left columns are labeled by \mathcal{B}_1 .

► Reorder the columns of A₁ such that B₂ corresponds to the k₂ left columns, pile a k₂-witness on the left, and let the other entries be 1^ν

$$A_2 := \begin{array}{|c|c|} W_{k_2}(\mathcal{B}_2) & (1^{\nu}) \\ \hline A_1 \text{ "reordered"} \\ \hline \mathcal{B}_2 \end{array}$$

• Repeat this process for each basis \mathcal{B}_i , $i = 3, \ldots, m$.

Given a supertropical semifield F, there is a natural embedding $\varphi:\mathbb{SB}\to F:$

$$\varphi: 1 \mapsto \mathbb{1}, \quad \varphi: 1^{\nu} \mapsto \mathbb{1}^{\nu}, \quad \varphi: 0 \mapsto \mathbb{0}.$$

Cor. Every s.c. is "super regular", i.e. it is F-realizable over any supertropical semifield F.

The superboolean framework allows also realization of posets, lattices, and quivers.

Thm. Any matroid is boolean (tangible) realizable, and hence also tropical realizable.