Moment problem for symmetric algebras of locally convex spaces

Maria Infusino

University of Konstanz

(Joint work with M. Ghasemi, S. Kuhlmann and M. Marshall)

Ordered Algebraic Structures and Related Topics

CIRM, Marseille Luminy, France – October 13th, 2015

Outline

Introduction to the infinite dimensional moment problem

- The classical moment problem (MP)
- A general formulation of MP

2 The moment problem for symmetric algebras on a lc space

- Formulation of the problem
- Our results for continuous functionals

MP for symmetric algebras of a lc space Open questions and work in progress The classical moment problem (MP) A general formulation of MP

The classical moment problem in one dimension

Let μ be a non-negative Borel measure defined on \mathbb{R} . The *n*-th moment of μ is:

$$m_n^{\mu} := \int_{\mathbb{R}} x^n \mu(dx)$$

If all moments of μ exist and are finite, then $(m_n^{\mu})_{n=0}^{\infty}$ is the **moment sequence** of μ .

MP for symmetric algebras of a lc space Open questions and work in progress The classical moment problem (MP) A general formulation of MP

The classical moment problem in one dimension

Let μ be a non-negative Borel measure defined on \mathbb{R} . The *n*-th moment of μ is:

$$m_n^\mu := \int_{\mathbb{R}} x^n \mu(dx)$$

If all moments of μ exist and are finite, then $(m_n^{\mu})_{n=0}^{\infty}$ is the **moment sequence** of μ .

 μ non-neg. Borel measure with all moments finite

Moment Sequence of μ

MP for symmetric algebras of a lc space Open questions and work in progress The classical moment problem (MP) A general formulation of MP

The classical moment problem in one dimension

Let μ be a non-negative Borel measure defined on \mathbb{R} . The *n*-th moment of μ is:

$$m_n^{\mu} := \int_{\mathbb{R}} x^n \mu(dx)$$

If all moments of μ exist and are finite, then $(m_n^{\mu})_{n=0}^{\infty}$ is the **moment sequence** of μ .

 μ non-neg. Borel measure with all moments finite

+--**-**?----

Moment Sequence of $\boldsymbol{\mu}$

MP for symmetric algebras of a lc space Open questions and work in progress The classical moment problem (MP) A general formulation of MP

The classical moment problem in one dimension

~ -

Let μ be a non-negative Borel measure defined on \mathbb{R} . The *n*-th moment of μ is:

$$m_n^{\mu} := \int_{\mathbb{R}} x^n \mu(dx)$$

If all moments of μ exist and are finite, then $(m_n^{\mu})_{n=0}^{\infty}$ is the **moment sequence** of μ .

 μ non-neg. Borel measure with all moments finite

Let $N \in \mathbb{N} \cup \{\infty\}$ and $K \subseteq \mathbb{R}$ closed.

The one-dimensional *K*-Moment Problem (MP)

Given a sequence $m = (m_n)_{n=0}^N$ of real numbers, does there exist a nonnegative Radon measure μ supported on a closed $K \subseteq \mathbb{R}$ s.t. for any $n = 0, 1, \ldots, N$ we have

$$m_n = \underbrace{\int_{\mathcal{K}} x^n \mu(dx)}_{n-\text{th moment of } \mu} ?$$

MP for symmetric algebras of a lc space Open questions and work in progress The classical moment problem (MP) A general formulation of MP

The classical moment problem in one dimension

(–

Let μ be a non-negative Borel measure defined on \mathbb{R} . The *n*-th moment of μ is:

$$m_n^{\mu} := \int_{\mathbb{R}} x^n \mu(dx)$$

If all moments of μ exist and are finite, then $(m_n^{\mu})_{n=0}^{\infty}$ is the **moment sequence** of μ .

 μ non-neg. Borel measure with all moments finite

Let $N \in \mathbb{N} \cup \{\infty\}$ and $K \subseteq \mathbb{R}$ closed.

The one-dimensional *K*-Moment Problem (MP)

Given a sequence $m = (m_n)_{n=0}^N$ of real numbers, does there exist a nonnegative Radon measure μ supported on a closed $K \subseteq \mathbb{R}$ s.t. for any $n = 0, 1, \ldots, N$ we have

$$m_n = \underbrace{\int_{\mathcal{K}} x^n \mu(dx)}_{n-\text{th moment of } \mu} ?$$

<u>Remember</u>: μ is supported on K if $\mu(\mathbb{R} \setminus K) = 0$.

MP for symmetric algebras of a lc space Open questions and work in progress The classical moment problem (MP) A general formulation of MP

The classical moment problem in one dimension

Let μ be a non-negative Borel measure defined on $\mathbb R.$ The $n-{\rm th}$ moment of μ is:

$$m_n^\mu := \int_{\mathbb{R}} x^n \mu(dx)$$

If all moments of μ exist and are finite, then $(m_n^{\mu})_{n=0}^{\infty}$ is the **moment sequence** of μ .

 μ non-neg. Borel measure with all moments finite

$$\xrightarrow{\leftarrow}$$
 Moment Sequence of μ

Let $N \in \mathbb{N} \cup \{\infty\}$ and $K \subseteq \mathbb{R}$ closed.

The one-dimensional K-Moment Problem (MP)

Given a sequence $m = (m_n)_{n=0}^N$ of real numbers, does there exist a nonnegative Radon measure μ supported on a closed $K \subseteq \mathbb{R}$ s.t. for any $n = 0, 1, \ldots, N$ we have

$$m_n = \underbrace{\int_{\mathcal{K}} x^n \mu(dx)}_{n-\text{th moment of } \mu} ?$$

<u>Remember</u>: μ is supported on K if $\mu(\mathbb{R} \setminus K) = 0$.

 $N = \infty \rightsquigarrow \mathsf{Full} \mathsf{MP}$ $N \in \mathbb{N} \rightsquigarrow \mathsf{Truncated} \mathsf{MP}$

MP for symmetric algebras of a lc space Open questions and work in progress The classical moment problem (MP) A general formulation of MP

The classical moment problem in one dimension

< - ·

Let μ be a non-negative Borel measure defined on $\mathbb R.$ The $n-{\rm th}$ moment of μ is:

$$m_n^{\mu} := \int_{\mathbb{R}} x^n \mu(dx)$$

If all moments of μ exist and are finite, then $(m_n^{\mu})_{n=0}^{\infty}$ is the **moment sequence** of μ .

 μ non-neg. Borel measure with all moments finite

Let $N \in \mathbb{N} \cup \{\infty\}$ and $K \subseteq \mathbb{R}$ closed.

The one-dimensional *K*-Moment Problem (MP)

Given a sequence $m = (m_n)_{n=0}^N$ of real numbers, does there exist a nonnegative Radon measure μ supported on a closed $K \subseteq \mathbb{R}$ s.t. for any $n = 0, 1, \ldots, N$ we have

$$m_n = \underbrace{\int_{\mathcal{K}} x^n \mu(dx)}_{n-\text{th moment of } \mu} ?$$

<u>Remember</u>: μ is supported on K if $\mu(\mathbb{R} \setminus K) = 0$.

 $N = \infty \rightsquigarrow \mathsf{Full} \mathsf{MP}$ $N \in \mathbb{N} \rightsquigarrow \mathsf{Truncated} \mathsf{MP}$

MP for symmetric algebras of a lc space Open questions and work in progress The classical moment problem (MP) A general formulation of MP

Riesz's Functional

Riesz's Functional

Let $m = (m_n)_{n=0}^{\infty}$ be such that $m_n \in \mathbb{R}$.

$$\begin{array}{rcl} \mathbf{\mathbb{R}}[x] & \to & \mathbb{R} \\ p(x) := \sum\limits_{n=0}^{N} a_n \, x^n & \mapsto & L_m(p) := \sum\limits_{n=0}^{N} a_n \, m_n. \end{array}$$

Note:

If *m* is represented by a non-negative measure μ on *K*, then

$$L_m(p) = \sum_{n=0}^{N} a_n m_n = \sum_{n=0}^{N} a_n \int_{K} x^n \mu(dx) = \int_{K} p(x) \mu(dx).$$

MP for symmetric algebras of a lc space Open questions and work in progress The classical moment problem (MP) A general formulation of MP

Riesz's Functional

Riesz's Functional

Let $m = (m_n)_{n=0}^{\infty}$ be such that $m_n \in \mathbb{R}$.

$$\begin{array}{rcl} m \colon & \mathbb{R}[x] & \to & \mathbb{R} \\ p(x) := \sum\limits_{n=0}^{N} a_n \, x^n & \mapsto & L_m(p) := \sum\limits_{n=0}^{N} a_n \, m_n. \end{array}$$

Note:

If *m* is represented by a non-negative measure μ on *K*, then

$$L_m(p) = \sum_{n=0}^N a_n m_n = \sum_{n=0}^N a_n \int_K x^n \mu(dx) = \int_K p(x) \mu(dx).$$

The one dimensional K-Moment Problem (MP)

Given a sequence $m = (m_n)_{n=0}^{\infty}$ of real numbers, does there exist a nonnegative Radon measure μ supported on a closed $K \subseteq \mathbb{R}$ s.t. for any $p \in \mathbb{R}[x]$ we have

$$L_m(p) = \int_K p(x)\mu(dx) ?$$

MP for symmetric algebras of a lc space Open questions and work in progress The classical moment problem (MP) A general formulation of MP

Riesz's Functional

Riesz's Functional

Let $m = (m_n)_{n=0}^{\infty}$ be such that $m_n \in \mathbb{R}$.

$$p(x) := \sum_{n=0}^{N} a_n x^n \quad \mapsto \quad L_m(p) := \sum_{n=0}^{N} a_n m_n.$$

Note:

If *m* is represented by a non-negative measure μ on *K*, then

$$L_m(p) = \sum_{n=0}^N a_n m_n = \sum_{n=0}^N a_n \int_K x^n \mu(dx) = \int_K p(x) \mu(dx).$$

The one-dimensional K-Moment Problem (MP)

Given a linear functional $L : \mathbb{R}[x] \to \mathbb{R}$, does there exist a nonnegative Radon measure μ supported on a closed $K \subseteq \mathbb{R}$ s.t. for any $p \in \mathbb{R}[x]$ we have

$$L(p) = \int_{K} p(x)\mu(dx) ?$$

MP for symmetric algebras of a lc space Open questions and work in progress The classical moment problem (MP) A general formulation of MP

The classical *K*-moment problem in finite dimensions

Let $\mathbf{x} := (x_1, \ldots, x_d)$ with $d \in \mathbb{N}$.

The *d*-dimensional *K*-Moment Problem (MP)

Given a linear functional $L : \mathbb{R}[\mathbf{x}] \to \mathbb{R}$, does there exist a nonnegative Radon measure μ supported on a closed $K \subseteq \mathbb{R}^d$ s.t. for any $p \in \mathbb{R}[\mathbf{x}]$ we have

$$L(p) = \int_{\mathcal{K}} p(\mathbf{x}) \mu(d\mathbf{x}) ?$$

MP for symmetric algebras of a lc space Open questions and work in progress The classical moment problem (MP) A general formulation of MP

The classical *K*-moment problem in finite dimensions

Let $\mathbf{x} := (x_1, \ldots, x_d)$ with $d \in \mathbb{N}$.

The *d*-dimensional *K*-Moment Problem (MP)

Given a linear functional $L : \mathbb{R}[\mathbf{x}] \to \mathbb{R}$, does there exist a nonnegative Radon measure μ supported on a closed $K \subseteq \mathbb{R}^d$ s.t. for any $p \in \mathbb{R}[\mathbf{x}]$ we have

$$L(p) = \int_{K} p(\mathbf{x}) \mu(d\mathbf{x}) ?$$

- What if we have infinitely many variables?
- What if we take a generic \mathbb{R} -vector space V (even infinite dim.) instead of \mathbb{R}^d ?
- What if we take a \mathbb{R} -algebra A instead of the polynomial ring $\mathbb{R}[\mathbf{x}]$?

MP for symmetric algebras of a lc space Open questions and work in progress The classical moment problem (MP) A general formulation of MP

The classical *K*-moment problem in finite dimensions

Let $\mathbf{x} := (x_1, \ldots, x_d)$ with $d \in \mathbb{N}$.

The *d*-dimensional *K*-Moment Problem (MP)

Given a linear functional $L : \mathbb{R}[\mathbf{x}] \to \mathbb{R}$, does there exist a nonnegative Radon measure μ supported on a closed $K \subseteq \mathbb{R}^d$ s.t. for any $p \in \mathbb{R}[\mathbf{x}]$ we have

$$L(p) = \int_{K} p(\mathbf{x}) \mu(d\mathbf{x}) ?$$

- What if we have infinitely many variables?
- What if we take a generic \mathbb{R} -vector space V (even infinite dim.) instead of \mathbb{R}^d ?
- What if we take a \mathbb{R} -algebra A instead of the polynomial ring $\mathbb{R}[\mathbf{x}]$?

Infinite dimensional *K*-Moment Problem

MP for symmetric algebras of a lc space Open questions and work in progress The classical moment problem (MP) A general formulation of MP

A general formulation of MP

Terminology and Notations:

- $A = \mathbb{R}$ -algebra= \mathbb{R} -vector space with a bilinear product.
- X(A) = character space of A = the set of all ring homomorphisms $\alpha : A \to \mathbb{R}$.
- For $a \in A$ the **Gelfand transform** $\hat{a} : X(A) \to \mathbb{R}$ is $\hat{a}(\alpha) := \alpha(a), \forall \alpha \in X(A)$.
- X(A) is given the weakest topology s.t. all \hat{a} , $a \in A$ are continuous.

The K-moment problem for \mathbb{R} -algebras

Given a linear functional $L : A \to \mathbb{R}$, does there exist a nonnegative Radon measure μ supported on a Borel $K \subseteq X(A)$ s.t. for any $a \in A$ we have

$$\mathcal{L}(a) = \int_{\mathcal{X}(\mathcal{A})} \hat{a}(lpha) \mu(dlpha) \; ?$$

Remember that a measure μ is supported on a Borel $K \subseteq X(A)$ if $\mu(X(A) \setminus K) = 0$.

MP for symmetric algebras of a lc space Open questions and work in progress The classical moment problem (MP) A general formulation of MP

A general formulation of MP

Terminology and Notations:

- $A = \mathbb{R}$ -algebra= \mathbb{R} -vector space with a bilinear product.
- X(A) = character space of A= the set of all ring homomorphisms α : A → ℝ.
- For $a \in A$ the **Gelfand transform** $\hat{a} : X(A) \to \mathbb{R}$ is $\hat{a}(\alpha) := \alpha(a), \forall \alpha \in X(A)$.
- X(A) is given the weakest topology s.t. all \hat{a} , $a \in A$ are continuous.

The K-moment problem for \mathbb{R} -algebras

Given a linear functional $L : A \to \mathbb{R}$, does there exist a nonnegative Radon measure μ supported on a Borel $K \subseteq X(A)$ s.t. for any $a \in A$ we have

$$\mathcal{L}(\mathsf{a}) = \int_{\mathcal{X}(\mathcal{A})} \hat{\mathsf{a}}(lpha) \mu(\mathsf{d}lpha) \; ?$$

Remember that a measure μ is supported on a Borel $K \subseteq X(A)$ if $\mu(X(A) \setminus K) = 0$.

NB: Finite dimensional MP is a particular case

If $A = \mathbb{R}[\mathbf{x}] = \mathbb{R}[\mathbf{x}_1, \dots, \mathbf{x}_d]$ then $X(A) = X(\mathbb{R}[\mathbf{x}])$ is identified (as tvs) with \mathbb{R}^d . Ring homomorphisms $\mathbb{R}[\mathbf{x}] \to \mathbb{R}$ correspond to point evaluations $f \mapsto f(\alpha), \alpha \in \mathbb{R}^d$ and so $X(\mathbb{R}[\mathbf{x}])$ corresponds to \mathbb{R}^d .

MP for symmetric algebras of a lc space Open questions and work in progress The classical moment problem (MP) A general formulation of MP

A general formulation of MP

Terminology and Notations:

- $A = \mathbb{R}$ -algebra, i.e. a \mathbb{R} -vector space with a bilinear product.
- X(A) = character space of A, i.e. the set of all ring homomorphisms $\alpha : A \to \mathbb{R}$.
- For a ∈ A, â : X(A) → ℝ is defined by â(α) := α(a) for all α ∈ X(A).
- X(A) is given the weakest topology s.t. the functions \hat{a} , $a \in A$ are continuous.

The K-moment problem for \mathbb{R} -algebras

Given a linear functional $L : \mathbb{R}[\mathbf{x}] \to \mathbb{R}$, does there exist a nonnegative Radon measure μ supported on a Borel $K \subseteq X(\mathbb{R}[\mathbf{x}]) = \mathbb{R}^d$ s.t. for any $a \in \mathbb{R}[\mathbf{x}]$ we have

$$L(a) = \int_{X(\mathbb{R}[x])} \hat{a}(\alpha) \mu(d\alpha) = \int_{\mathbb{R}^d} a(\alpha) \mu(d\alpha) ?$$

Remember that a measure μ is supported on a Borel $K \subseteq \mathbb{R}^d$ if $\mu(\mathbb{R}^d \setminus K) = 0$.

NB: Finite dimensional MP is a particular case

If $A = \mathbb{R}[\mathbf{x}] = \mathbb{R}[x_1, \dots, x_d]$ then $X(A) = X(\mathbb{R}[\mathbf{x}])$ is identified (as tvs) with \mathbb{R}^d . Ring homomorphisms $\mathbb{R}[\mathbf{x}] \to \mathbb{R}$ correspond to point evaluations $f \mapsto f(\alpha), \alpha \in \mathbb{R}^d$ and so $X(\mathbb{R}[\mathbf{x}])$ corresponds to \mathbb{R}^n .

MP for symmetric algebras of a lc space Open questions and work in progress The classical moment problem (MP) A general formulation of MP

The K-moment problem for \mathbb{R} -algebras

The K-moment problem for \mathbb{R} -algebras

Given a linear functional $L : A \to \mathbb{R}$, does there exist a nonnegative Radon measure μ supported on a Borel $K \subseteq X(A)$ s.t. for any $a \in A$ we have

$$L(a) = \int_{X(A)} \hat{a}(\alpha) \mu(d\alpha)?$$

Pos(K):= {a ∈ A : â ≥ 0 on K}

• M := **2d-power module** generated by $p_1, \dots, p_s \in A$ = $\sum A^{2d} + p_1 \sum A^{2d} + \dots + p_s \sum A^{2d}$

• $\mathbf{X}_{\mathbf{M}} := \{ \alpha \in X(A) : \hat{p}_i(\alpha) \ge 0, i = 1, \dots, s \}$

MP for symmetric algebras of a lc space Open questions and work in progress The classical moment problem (MP) A general formulation of MP

The K-moment problem for \mathbb{R} -algebras

The K-moment problem for \mathbb{R} -algebras

Given a linear functional $L : A \to \mathbb{R}$, does there exist a nonnegative Radon measure μ supported on a Borel $K \subseteq X(A)$ s.t. for any $a \in A$ we have

$$L(a) = \int_{X(A)} \hat{a}(\alpha) \mu(d\alpha)?$$

- Pos(K):= {a ∈ A : â ≥ 0 on K}
- M :=2d-power module generated by p₁,..., p_s ∈ A
 = ∑ A^{2d} + p₁ ∑ A^{2d} + ··· + p_s ∑ A^{2d} (M can be also infinitely generated!).
 X_M := {α ∈ X(A) : p̂_i(α) > 0, i = 1,..., s}

MP for symmetric algebras of a lc space Open questions and work in progress The classical moment problem (MP) A general formulation of MP

The K-moment problem for \mathbb{R} -algebras

The K-moment problem for \mathbb{R} -algebras

Given a linear functional $L : A \to \mathbb{R}$, does there exist a nonnegative Radon measure μ supported on a Borel $K \subseteq X(A)$ s.t. for any $a \in A$ we have

$$L(a) = \int_{X(A)} \hat{a}(\alpha) \mu(d\alpha)?$$

 M :=2d-power module generated by p₁,..., p_s ∈ A
 = ∑ A^{2d} + p₁ ∑ A^{2d} + ··· + p_s ∑ A^{2d} (M can be also infinitely generated!).
 X_M := {α ∈ X(A) : p̂_i(α) > 0, i = 1,...,s}

<u>NOTE</u>: If μ is a representing measure for L and $supp(\mu) \subseteq K$, then: $L(Pos(K)) \subseteq [0, +\infty)$ and in particular $L(M) \subseteq [0, +\infty)$. What about the converse?

MP for symmetric algebras of a lc space Open questions and work in progress The classical moment problem (MP) A general formulation of MP

The K-moment problem for \mathbb{R} -algebras

The K-moment problem for \mathbb{R} -algebras

Given a linear functional $L : A \to \mathbb{R}$, does there exist a nonnegative Radon measure μ supported on a Borel $K \subseteq X(A)$ s.t. for any $a \in A$ we have

$$L(a) = \int_{X(A)} \hat{a}(\alpha) \mu(d\alpha)?$$

 M :=2d-power module generated by p₁,..., p_s ∈ A
 = ∑A^{2d} + p₁ ∑A^{2d} + ··· + p_s ∑A^{2d} (M can be also infinitely generated!).
 X_M := {α ∈ X(A) : p̂_i(α) ≥ 0, i = 1,...,s}

<u>NOTE</u>: If μ is a representing measure for L and $\operatorname{supp}(\mu) \subseteq K$, then: $L(\operatorname{Pos}(K)) \subseteq [0, +\infty)$ and in particular $L(M) \subseteq [0, +\infty)$. What about the converse?

Thm (M. Ghasemi, M. Marshall, S. Wagner 2014; M. Ghasemi, S. Kuhlmann 2013) Let *M* be an archimedean 2d-power module of *A* and $L: A \to \mathbb{R}$ a linear functional. $(L(M) \subseteq [0, +\infty)) \Leftrightarrow (\exists ! \mu: \forall a \in A, L(a) = \int_{X(A)} \hat{a}(\alpha)\mu(d\alpha) \& \operatorname{supp}(\mu) \subseteq X_M).$

MP for symmetric algebras of a lc space Open questions and work in progress The classical moment problem (MP) A general formulation of MP

The K-moment problem for \mathbb{R} -algebras

The K-moment problem for \mathbb{R} -algebras

Given a linear functional $L : A \to \mathbb{R}$, does there exist a nonnegative Radon measure μ supported on a Borel $K \subseteq X(A)$ s.t. for any $a \in A$ we have

$$L(a) = \int_{X(A)} \hat{a}(\alpha) \mu(d\alpha)?$$

• M := **2d-power module** generated by $p_1, \ldots, p_s \in A$ = $\sum A^{2d} + p_1 \sum A^{2d} + \cdots + p_s \sum A^{2d}$ (*M* can be also infinitely generated!).

•
$$\mathbf{X}_{\mathbf{M}} := \{ \alpha \in X(A) : \hat{p}_i(\alpha) \ge 0, \ i = 1, \dots, s \}$$

• *M* Archimedean if $\forall a \in A, \exists N \in \mathbb{N}: N \pm a \in M$.

NOTE: If μ is a representing measure for L and $\operatorname{supp}(\mu) \subseteq K$, then: $L(\operatorname{Pos}(K)) \subseteq [0, +\infty)$ and in particular $L(M) \subseteq [0, +\infty)$. What about the converse?

Thm (M. Ghasemi, M. Marshall, S. Wagner 2014; M. Ghasemi, S. Kuhlmann 2013)

Let *M* be an archimedean 2d-power module of *A* and $L : A \to \mathbb{R}$ a linear functional. $(L(M) \subseteq [0, +\infty)) \Leftrightarrow (\exists ! \mu : \forall a \in A, L(a) = \int_{X(A)} \hat{a}(\alpha)\mu(d\alpha) \& \operatorname{supp}(\mu) \subseteq X_M).$

Framework

- V = ℝ-vector space
- τ := a locally convex (lc) topology on V
 = a topology on V generated by some family S of seminorms on V
 = the weakest topology on V s.t. each ρ ∈ S is continuous.
- W.I.o.g. we assume that the family S is **directed**, i.e. $\forall \rho_1, \rho_2 \in S, \exists \rho \in S \exists C > 0 \text{ s.t. } C\rho(v) \ge \max\{\rho_1(v), \rho_2(v)\}, \forall v \in V.$
- S(V)= the symmetric algebra of V = the tensor algebra T(V) factored by the ideal gen. by v ⊗ w − w ⊗ v
- $S(V)_k$ =the k-th homogeneous part of S(V)= the image of k-th homogeneous part $V^{\otimes k}$ of T(V) under the canonical map $\sum_{i=1}^{n} v_{i1} \otimes \cdots \otimes v_{ik} \mapsto \sum_{i=1}^{n} v_{i1} \cdots v_{ik}$.
- $V^*:=$ algebraic dual of V={ $\ell: V \to \mathbb{R} | \ell$ is a linear functional}
- V':=topological dual of V={ $\ell : V \to \mathbb{R} | \ell$ is a τ -continuous linear functional}

Formulation of the problem Our results for continuous functionals

MP for symmetric algebras on a lc space

 (V, τ) with τ lc-topology. Then:

- $X(S(V)) = Hom(S(V), \mathbb{R}) \cong V^*$ via the isomorphism $\ell \mapsto \ell|_V$
- $\forall f \in S(V), \hat{f} : X(S(V)) \rightarrow \mathbb{R}$ is given by $\alpha \mapsto \hat{f}(\alpha) := \alpha(f)$

The MP for symmetric algebras on a lc space

Given a linear functional $L: S(V) \to \mathbb{R}$, does there exist a nonnegative Radon measure μ on V^* s.t. for any $f \in S(V)$ we have

$$L(f) = \int_{V^*} \hat{f}(\alpha) \mu(d\alpha)?$$

Is μ unique? What is the support of μ ?

QUESTION: continuous functionals

What happens when $L: S(V) \to \mathbb{R}$ is continuous? Which topology is natural to consider on S(V)? Can τ on V be extended to S(V)?

Formulation of the problem Our results for continuous functionals

Continuous functionals on S(V)

(I. case): τ is generated by $S = \{\rho\}$, i.e. (V, ρ) with ρ seminorm on V.

Proposition (M. Ghasemi, M. I., S. Kuhlmann, M. Marshall, 2015)

Any seminorm ρ on V can be extended to a **submultiplicative seminorm** $\overline{\rho}$ on S(V), i.e. $\overline{\rho}(fg) \leq \overline{\rho}(f)\overline{\rho}(g), \forall f, g \in S(V)$.

1 tensor seminorm $\rho^{\otimes k}$ on $V^{\otimes k}$:

$$(\rho^{\otimes k})(f) := \inf\{\sum_{i=1}^n \rho(f_{i1}) \cdots \rho(f_{ik}) : f = \sum_{i=1}^n f_{i1} \otimes \cdots \otimes f_{ik}, f_{ij} \in V, n \ge 1\}.$$

2 Let $\pi_k : V^{\otimes k} \to S(V)_k$ be the canonical map. For $k \ge 1$ define $\overline{\rho}_k$ to be the **quotient seminorm on** $S(V)_k$ induced by $\rho^{\otimes k}$: $\overline{\rho}_k(f) = \inf\{\sum_{i=1}^n \rho(f_{i1}) \cdots \rho(f_{ik}) : f = \sum_{i=1}^n f_{i1} \cdots f_{ik}, f_{ij} \in V, n \ge 1\}.$

Define $\overline{\rho}_0$ to be the usual absolute value on \mathbb{R} .

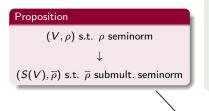
3 Extend ρ to a submultiplicative seminorm $\overline{\rho}$ on S(V) by taking the **projective extension of** ρ **to** S(V) defined for any $f = f_0 + \dots + f_r$, $f_k \in S(V)_k$, $k = 0, \dots, r$ by: $\overline{\rho}(f) := \sum_{k=0}^r \overline{\rho}_k(f_k).$

Formulation of the problem Our results for continuous functionals

Continuous functionals on S(V)

(I. case)

Thm (Ghasemi, Kuhlmann, Marshall, 2014)



Let (A, σ) be a submult. seminormed \mathbb{R} -alg. and M a 2d-power module of A. If $L : A \to \mathbb{R}$ is a σ -continuous linear functional, then: $(L(M) \subseteq [0, +\infty)) \Leftrightarrow (\exists ! \mu \text{ on } X(A):$ $L(a) = \int_{X(A)} \hat{a}(\alpha)\mu(d\alpha) \& \operatorname{supp} \mu \subseteq X_M \cap \mathfrak{sp}(\sigma))$

Theorem (M. Ghasemi, M. I., S. Kuhlmann, M. Marshall, 2015)

Let (V, ρ) be a seminormed \mathbb{R} -vector space and M be a 2d-power module of S(V). If $L : S(V) \to \mathbb{R}$ is a $\overline{\rho}$ -continuous linear functional, then: $(L(M) \subseteq [0, +\infty)) \Leftrightarrow (\exists ! \mu \text{ on } V^* : L(f) = \int_{V^*} \hat{f}(\alpha)\mu(d\alpha) \& \operatorname{supp} \mu \subseteq X_M \cap \overline{B}_1(\rho'))$

Notation:

-Gelfand spectrum of ρ : $\mathfrak{sp}(\rho) := \{ \alpha \in X(A) : \alpha \text{ is } \rho \text{-continuous} \}.$

- -operator norm in V^* w.r.t. ρ : $\rho'(v^*) := \inf\{C \in [0,\infty) : |v^*(f)| \le C\rho(f) \ \forall f \in V\}$
- -closed unitary ball in V^* w.r.t. ρ : $\overline{B}_1(\rho') := \{v^* \in V^* : \rho'(v^*) \le 1\}.$

Formulation of the problem Our results for continuous functionals

Continuous functionals on S(V)

(II. case)

(II. case): au is a lc topology on V generated by a directed family $\mathcal S$ of seminorms

Lemma

Suppose that τ is a lc topology on V generated by a directed family S of seminorms. $(L: V \to \mathbb{R} \text{ is } \tau\text{-continuous }) \Leftrightarrow (\exists \rho \in S \text{ s.t. } L \text{ is } \rho\text{-continuous}).$

Proposition (M. Ghasemi, M. I., S. Kuhlmann, M. Marshall, 2015)

(V, au) s.t. au lc topology $ightarrow (S(V), \overline{ au})$ s.t. $\overline{ au}$ lmc topology

 $-\overline{\tau}$ defined by the directed family of submultiplicative seminorms $\overline{i\rho}$, $\rho \in S$, $i \in \mathbb{N}$ $-\overline{\tau}$ is the finest lmc topology on S(V) extending τ .

<u>RECALL</u>: A locally multiplicatively convex (Imc) topology on an \mathbb{R} -algebra A is a topology on A generated by some family of submultiplicative seminorms on A.

Theorem (M. Ghasemi, M. I., S. Kuhlmann, M. Marshall, 2015)

Let (V, τ) be a lc \mathbb{R} -vector space and M be a 2d-power module of S(V). If $L : S(V) \to \mathbb{R}$ is a $\overline{\tau}$ -continuous linear functional, then: $(L(M) \subseteq [0, +\infty)) \Leftrightarrow (\exists ! \mu \text{ on } V^* \colon L(f) = \int_{V^*} \hat{f}(\alpha)\mu(d\alpha) \& \operatorname{supp} \mu \subseteq X_M \cap \overline{B}_i(\rho')$ for some $\rho \in S$ and some integer $i \ge 1$)

Open questions and work in progress

- Comparison with the previous results for lc nuclear spaces.
- Can we generalize our result by weakening the continuity hp on $L: S(V) \rightarrow \mathbb{R}$ without any further assumption on V?
- Would this still give a 'good' characterization of the support?

Open questions and work in progress

- Comparison with the previous results for lc nuclear spaces.
- Can we generalize our result by weakening the continuity hp on $L: S(V) \rightarrow \mathbb{R}$ without any further assumption on V?
- Would this still give a 'good' characterization of the support?

For more details see:

M. Ghasemi, M. Infusino, S. Kuhlmann, M. Marshall, **Moment problem for symmetric algebras of locally convex spaces**, arXiv:1507.06781.

Thank you for your attention

and

Thank you Murray

working with you was an incomparable opportunity for me. I miss you.

Newton Institute, Cambridge-July, 2013.

Thank you for your attention

and

Thank you Murray

working with you was an incomparable opportunity for me. I miss you.

Newton Institute, Cambridge-July, 2013.