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Introduction
MP for symmetric algebras of a lc space

Open questions and work in progress

The classical moment problem (MP)
A general formulation of MP

The classical moment problem in one dimension
Let µ be a non-negative Borel measure defined on R. The n−th moment of µ is:

mµ
n :=

∫
R

xnµ(dx)

If all moments of µ exist and are finite, then (mµ
n )
∞
n=0 is the moment sequence of µ.

µ non-neg. Borel measure
with all moments finite

Moment Sequence of µ?
Let N ∈ N ∪ {∞} and K ⊆ R closed.

The one-dimensional K−Moment Problem (MP)

Given a sequence m = (mn)Nn=0 of real numbers, does there exist a nonnegative Radon
measure µ supported on a closed K ⊆ R s.t. for any n = 0, 1, . . . ,N we have

mn =

∫
K

xnµ(dx)︸ ︷︷ ︸
n-th moment of µ

?

Remember: µ is supported on K if µ(R \ K) = 0.

N =∞ Full MP N ∈ N Truncated MP
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The classical moment problem (MP)
A general formulation of MP

Riesz’s Functional

Riesz’s Functional

Let m = (mn)∞n=0 be such that mn ∈ R.

Lm : R[x] → R

p(x) :=
N∑

n=0
an xn 7→ Lm(p) :=

N∑
n=0

an mn.

Note:
If m is represented by a non-negative measure µ on K , then

Lm(p) =
N∑

n=0

an mn =
N∑

n=0

an

∫
K

xnµ(dx) =
∫

K
p(x)µ(dx).

The one-dimensional K−Moment Problem (MP)

Given a linear functional L : R[x]→ R, does there exist a nonnegative Radon measure
µ supported on a closed K ⊆ R s.t. for any p ∈ R[x] we have

L(p) =
∫

K
p(x)µ(dx) ?
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Introduction
MP for symmetric algebras of a lc space

Open questions and work in progress

The classical moment problem (MP)
A general formulation of MP

The classical K−moment problem in finite dimensions

Let x := (x1, . . . , xd ) with d ∈ N.

The d-dimensional K−Moment Problem (MP)

Given a linear functional L : R[x]→ R, does there exist a nonnegative Radon measure
µ supported on a closed K ⊆ Rd s.t. for any p ∈ R[x] we have

L(p) =
∫

K
p(x)µ(dx) ?

What if we have infinitely many variables?

What if we take a generic R−vector space V (even infinite dim.) instead of Rd?

What if we take a R−algebra A instead of the polynomial ring R[x] ?

Infinite dimensional K -Moment Problem
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Introduction
MP for symmetric algebras of a lc space

Open questions and work in progress

The classical moment problem (MP)
A general formulation of MP

A general formulation of MP
Terminology and Notations:

A = R−algebra=R−vector space with a bilinear product.
X (A) = character space of A= the set of all ring homomorphisms α : A→ R.
For a ∈ A the Gelfand transform â : X (A)→ R is â(α) := α(a), ∀α ∈ X (A).
X (A) is given the weakest topology s.t. all â, a ∈ A are continuous.

The K−moment problem for R−algebras

Given a linear functional L : A→ R, does there exist a nonnegative Radon measure µ
supported on a Borel K ⊆ X (A) s.t. for any a ∈ A we have

L(a) =
∫

X (A)
â(α)µ(dα) ?

Remember that a measure µ is supported on a Borel K ⊆ X (A) if µ(X (A) \ K) = 0.

NB: Finite dimensional MP is a particular case

If A = R[x] = R[x1, . . . , xd ] then X (A) = X (R[x]) is identified (as tvs) with Rd .
Ring homomorphisms R[x]→ R correspond to point evaluations f 7→ f (α), α ∈ Rd

and so X (R[x]) corresponds to Rd .
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MP for symmetric algebras of a lc space

Open questions and work in progress

The classical moment problem (MP)
A general formulation of MP

The K−moment problem for R−algebras
The K−moment problem for R−algebras

Given a linear functional L : A→ R, does there exist a nonnegative Radon measure µ

supported on a Borel K ⊆ X (A) s.t. for any a ∈ A we have

L(a) =
∫

X (A)
â(α)µ(dα)?

Pos(K):= {a ∈ A : â ≥ 0 on K}
M :=2d-power module generated by p1, . . . , ps ∈ A

=
∑

A2d + p1
∑

A2d + · · ·+ ps
∑

A2d

(M can be also infinitely generated!)

.
XM := {α ∈ X (A) : p̂i (α) ≥ 0, i = 1, . . . , s}

M Archimedean if ∀ a ∈ A, ∃N ∈ N: N ± a ∈ M.

NOTE: If µ is a representing measure for L and supp(µ) ⊆ K , then:
L(Pos(K)) ⊆ [0,+∞) and in particular L(M) ⊆ [0,+∞).

What about the converse?

Thm (M. Ghasemi, M. Marshall, S. Wagner 2014; M. Ghasemi, S. Kuhlmann 2013)

Let M be an archimedean 2d−power module of A and L : A→ R a linear functional.(
L(M) ⊆ [0,+∞)

)
⇔
(
∃ !µ: ∀a ∈ A, L(a) =

∫
X (A) â(α)µ(dα) & supp(µ) ⊆ XM

)
.
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X (A) â(α)µ(dα) & supp(µ) ⊆ XM

)
.

Maria Infusino MP for symmetric algebras of lc spaces 5 / 12



Introduction
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Open questions and work in progress

Formulation of the problem
Our results for continuous functionals

Framework

V = R-vector space

τ := a locally convex (lc) topology on V
= a topology on V generated by some family S of seminorms on V
= the weakest topology on V s.t. each ρ ∈ S is continuous.

W.l.o.g. we assume that the family S is directed, i.e.
∀ ρ1, ρ2 ∈ S, ∃ ρ ∈ S ∃C > 0 s.t. Cρ(v) ≥ max{ρ1(v), ρ2(v)}, ∀ v ∈ V .

S(V )= the symmetric algebra of V
= the tensor algebra T (V ) factored by the ideal gen. by v ⊗ w − w ⊗ v

S(V )k=the k-th homogeneous part of S(V )
= the image of k-th homogeneous part V⊗k of T (V ) under the canonical

map
∑n

i=1 vi1 ⊗ · · · ⊗ vik 7→
∑n

i=1 vi1 · · · vik .

V ∗:=algebraic dual of V={` : V → R|` is a linear functional}

V ′:=topological dual of V={` : V → R|` is a τ−continuous linear functional}
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Formulation of the problem
Our results for continuous functionals

MP for symmetric algebras on a lc space

(V , τ) with τ lc-topology. Then:

X (S(V )) = Hom(S(V ),R) ∼= V ∗ via the isomorphism ` 7→ `|V
∀f ∈ S(V ), f̂ : X (S(V ))→ R is given by α 7→ f̂ (α) := α(f )

The MP for symmetric algebras on a lc space

Given a linear functional L : S(V )→ R, does there exist a nonnegative Radon measure
µ on V ∗ s.t. for any f ∈ S(V ) we have

L(f ) =
∫

V∗
f̂ (α)µ(dα) ?

Is µ unique? What is the support of µ?

QUESTION: continuous functionals

What happens when L : S(V )→ R is continuous?
Which topology is natural to consider on S(V )? Can τ on V be extended to S(V )?
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Continuous functionals on S(V ) (I. case)
(I. case): τ is generated by S = {ρ}, i.e. (V , ρ) with ρ seminorm on V .

Proposition (M. Ghasemi, M. I., S. Kuhlmann, M. Marshall, 2015)

Any seminorm ρ on V can be extended to a submultiplicative seminorm ρ on S(V ),
i.e. ρ(fg) ≤ ρ(f )ρ(g), ∀f , g ∈ S(V ).

1 tensor seminorm ρ⊗k on V⊗k :

(ρ⊗k)(f ) := inf{
n∑

i=1

ρ(fi1) · · · ρ(fik) : f =
n∑

i=1

fi1 ⊗ · · · ⊗ fik , fij ∈ V , n ≥ 1}.

2 Let πk : V⊗k → S(V )k be the canonical map.
For k ≥ 1 define ρk to be the quotient seminorm on S(V )k induced by ρ⊗k :

ρk(f ) = inf{
n∑

i=1

ρ(fi1) · · · ρ(fik) : f =
n∑

i=1

fi1 · · · fik , fij ∈ V , n ≥ 1}.

Define ρ0 to be the usual absolute value on R.
3 Extend ρ to a submultiplicative seminorm ρ on S(V ) by taking the

projective extension of ρ to S(V ) defined for any f = f0 + · · ·+ fr ,
fk ∈ S(V )k , k = 0, . . . , r by:

ρ(f ) :=
r∑

k=0

ρk(fk).
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Continuous functionals on S(V ) (I. case)

Proposition

(V , ρ) s.t. ρ seminorm

↓

(S(V ), ρ) s.t. ρ submult. seminorm

Thm (Ghasemi, Kuhlmann, Marshall, 2014)

Let (A, σ) be a submult. seminormed R-alg.
and M a 2d-power module of A. If L : A→ R
is a σ−continuous linear functional, then:(
L(M) ⊆ [0,+∞)

)
⇔
(
∃ !µ on X (A):

L(a) =
∫

X (A)

â(α)µ(dα) & suppµ ⊆ XM ∩ sp(σ)
)

Theorem (M. Ghasemi, M. I., S. Kuhlmann, M. Marshall, 2015)

Let (V , ρ) be a seminormed R-vector space and M be a 2d-power module of S(V ).
If L : S(V )→ R is a ρ-continuous linear functional, then:(
L(M) ⊆ [0,+∞)

)
⇔
(
∃ !µ on V ∗: L(f ) =

∫
V∗

f̂ (α)µ(dα) & suppµ ⊆ XM ∩ B1(ρ′)
)

Notation:
-Gelfand spectrum of ρ: sp(ρ) := {α ∈ X (A) : α is ρ-continuous}.
-operator norm in V ∗ w.r.t. ρ: ρ′(v∗) := inf{C ∈ [0,∞) : |v∗(f )| ≤ Cρ(f ) ∀f ∈ V }
-closed unitary ball in V ∗ w.r.t. ρ: B1(ρ′) := {v∗ ∈ V ∗ : ρ′(v∗) ≤ 1}.
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Continuous functionals on S(V ) (II. case)
(II. case): τ is a lc topology on V generated by a directed family S of seminorms

Lemma

Suppose that τ is a lc topology on V generated by a directed family S of seminorms.(
L : V → R is τ -continuous

)
⇔
(
∃ ρ ∈ S s.t. L is ρ-continuous

)
.

Proposition (M. Ghasemi, M. I., S. Kuhlmann, M. Marshall, 2015)

(V , τ) s.t. τ lc topology → (S(V ), τ) s.t. τ lmc topology

-τ defined by the directed family of submultiplicative seminorms iρ, ρ ∈ S, i ∈ N
-τ is the finest lmc topology on S(V ) extending τ .

RECALL: A locally multiplicatively convex (lmc) topology on an R-algebra A is a
topology on A generated by some family of submultiplicative seminorms on A.

Theorem (M. Ghasemi, M. I., S. Kuhlmann, M. Marshall, 2015)

Let (V , τ) be a lc R-vector space and M be a 2d-power module of S(V ).
If L : S(V )→ R is a τ -continuous linear functional, then:(
L(M) ⊆ [0,+∞)

)
⇔
(
∃ !µ on V ∗: L(f ) =

∫
V∗

f̂ (α)µ(dα) & suppµ ⊆ XM ∩ B i (ρ
′)

. for some ρ ∈ S and some integer i ≥ 1
)
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Open questions and work in progress

Comparison with the previous results for lc nuclear spaces.

Can we generalize our result by weakening the continuity hp
on L : S(V )→ R without any further assumption on V ?

Would this still give a ’good’ characterization of the support?

For more details see:

M. Ghasemi, M. Infusino, S. Kuhlmann, M. Marshall, Moment
problem for symmetric algebras of locally convex spaces,
arXiv:1507.06781.
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Thank you for your attention
and

Thank you Murray
working with you was an incomparable opportunity for me.

I miss you.

Newton Institute, Cambridge-July, 2013.
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