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1. Hilbert’s 1888 Theorem
I Let Pn,2d , ⌃n,2d be the set of n-ary 2d -ic forms that are positive

semidefinite (psd), respectively sum of squares (sos).

I Theorem (Hilbert, 1888): Pn,2d = ⌃n,2d if and only if n = 2 or
2d = 2 or (n, 2d) = (3, 4).

I The arguments for Pn,2d = ⌃n,2d for n = 2 and 2d = 2 were already
known in the late 19th century.
Hilbert proved P3,4 = ⌃3,4.

I Conversely, Hilbert proved that ⌃4,4 ( P4,4 and ⌃3,6 ( P3,6, and
demonstrated that it is enough for all remaining cases, i.e.
Proposition [Reduction to Basic cases]:

If ⌃4,4 ( P4,4 and ⌃3,6 ( P3,6, then ⌃n,2d ( Pn,2d for all
n � 3, 2d � 4 and (n, 2d) 6= (3, 4).

Idea of Proof:

f 2 Pn,2d \ ⌃n,2d )
(

f 2 Pn+j,2d \ ⌃n+j,2d 8 j � 0, and
x

2i
1 f 2 Pn, 2d+2i \ ⌃n, 2d+2i 8 i � 0. ⇤
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1. Hilbert’s 1888 Theorem

I Examples of psd not sos quaternary quartics and ternary sextics:

I
(Motzkin, 1967)

M(x , y , z) := z

6 + x

4
y

2 + x

2
y

4 � 3x

2
y

2
z

2 2 P3,6 \ ⌃3,6

I
(Robinson, 1969)

R(x , y , z) := x

6 + y

6 + z

6 � (x4
y

2 + y

4
z

2 + z

4
x

2 + x

2
y

4 + y

2
z

4+
z

2
x

4) + 3x

2
y

2
z

2 2 P3,6 \ ⌃3,6,
W (x , y , z ,w) := x

2(x � w)2 +
�
y(y � w)� z(z � w)

�2
+ 2yz(x+

y � w)(x + z � w) 2 P4,4 \ ⌃4,4

I
(Choi and Lam, 1976)

Q(x , y , z ,w) := w

4 + x

2
y

2 + y

2
z

2 + z

2
x

2 � 4xyzw 2 P4,4 \ ⌃4,4,

S(x , y , z) = x

4
y

2 + y

4
z

2 + z

4
x

2 � 3x

2
y

2
z

2 2 P3,6 \ ⌃3,6
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2. Even Symmetric forms

I A n-ary 2d -ic form f is called
I

symmetric if 8 � 2 Sn: f (x�(1), . . . , x�(n)) = f (x1, . . . , xn).

I
even symmetric if it is symmetric and in each term of f every
variable has even degree.

I
SPe

n,2d := {f 2 Fn,2d | f is even symmetric and psd}

I
S⌃e

n,2d := {f 2 Fn,2d | f is even symmetric and sos}

I Q(Se) : For what pairs (n, 2d) will SPe
n,2d ✓ S⌃e

n,2d?

I Known:
I

SPe
n,2d = S⌃e

n,2d if n = 2, d = 1, (n, 2d) = (3, 4)| {z }
(by Hilbert’s Theorem)

, (n, 4)n�4| {z }
(C-L-R)

, (3, 8)| {z }
(Harris)

I
SPe

n,2d ) S⌃e
n,2d for (n, 2d) = (n, 6)n�3| {z }

(C-L-R)

, (3, 10), (4, 8)| {z }
(Harris)

.
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2. Even Symmetric forms

I i.e. Known answer to Q(Se):

deg \ var 2 3 4 5 . . .
2 X X X X . . .
4 X X X X . . .
6 X ⇥ ⇥ ⇥ . . .
8 X X ⇥ ? ?
10 X ⇥ ? ? ?
12 X ? ? ? ?
...

... ? ? ? ?

where, a tick (X) denotes a positive answer to Q(Se), a cross (⇥)
denotes a negative answer to Q(Se), and a (?) denotes an
unknown answer to Q(Se).



2. Even Symmetric forms

I To get a complete answer to Q(Se), look at:

deg \ var 2 3 4 5 . . .
2 X X X X . . .
4 X X X X . . .
6 X ⇥ ⇥ ⇥ . . .
8 X X ⇥ ? ?
10 X ⇥ ? ? ?
12 X ? ? ? ?
14 X ? ? ? ?
...

...
... ? ? ?

(3, 2d)d�6
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... . . .

(n, 8)n�5

(3, 2d)d�6 (n, 2d)n�4,d�5



2.1. Analogue of Hilbert’s 1888 Theorem for
Even Symmetric forms

I Theorem (G., Kuhlmann, Reznick): SPe
n,2d = S⌃e

n,2d if and
only if n = 2 or d = 1 or (n, 2d) = (n, 3)n�4 or (3, 8).
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n,2d if and
only if n = 2 or d = 1 or (n, 2d) = (n, 3)n�4 or (3, 8).

I Proof:
I give a "Reduction to Basic Cases: (n, 8)n�5, (n, 2d)n�4,d=5,6"

by
I

finding appropriate indefinite irreducible even symmetric forms,

I
giving a Degree jumping principle to find psd not sos even symmetric

n�ary forms of degree

(
2d + 4r (for integer r � 2), and

2d + 2n
from given psd not sos even symmetric n�ary 2d�ic forms.

I construct explicit forms
I f 2 SPe

n,8 \ S⌃e
n,8 for n � 5,

I g 2 SPe
n,10 \ S⌃e

n,10 for n � 4,

I h 2 SPe
n,12 \ S⌃e

n,12 for n � 4.
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Charu Goel
Hilbert’s reduction: (4,4),(3,6)

Degree jump: 
Multiply by (x_1)^2i 
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2.2. Degree jumping principle
I Lemma 1 (G. Kuhlmann, Reznick): For n � 3, the even

symmetric real forms pn := 4
Pn

j=1 x

4
j � 17

P
1i<jn x

2
i x

2
j and

qn :=
Pn

j=1 x

6
j + 3

P
1i 6=jn x

4
i x

2
j � 100

P
1i<j<kn x

2
i x

2
j x

2
k are

irreducible over R.

I Lemma 2: Let f 2 Pn,2d \ ⌃n,2d and p an irreducible indefinite
form of degree r in R[x1, . . . , xn]. Then p

2
f 2 Pn,2d+2r \ ⌃n,2d+2r .

I Let �n,2d := SPe
n,2d \ S⌃e

n,2d

I Theorem (G. Kuhlmann, Reznick) [Degree Jumping Principle]:

Suppose f 2 �n,2d for n � 3, then
(i) for any integer r � 2, the form p

2a
n q

2b
n f 2 �n,2d+4r , where

r = 2a + 3b; a, b 2 Z+,
(ii) (x1 . . . xn)2f 2 �n,2d+2n.

Proof follows from above Lemmas. ⇤
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I Proposition (G., Kuhlmann, Reznick) [Reduction to basic
cases]: If �n,2d 6= ? for (n, 8)n�4, (n, 10)n�3 and (n, 12)n�3, then
�n,2d 6= ? for (n, 2d)n�3,d�7.

I Proof:
deg \ var 2 3
2; 4 X X
6 X ⇥
8 X X
10 X ⇥
12 X
14 X
16 X
18 X
...

...
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2.3. Explicit examples completing answer to Q(S e)

I For m � 2, let
L2m+1 := m(m + 1)

X

i<j

(xi � xj)
4 �

⇣X

i<j

(xi � xj)
2
⌘2

I Let Mr (x1, . . . , xn) := x

r
1 + . . .+ x

r
n for an integer r � 1.

I Theorem (G., Kuhlmann, Reznick):
1. For m � 2, G2m+1 := L2m+1(x2

1 , . . . , x
2
2m+1) 2 �2m+1,8,

2. For m � 2, D2m := L2m+1(x2
1 , . . . , x

2
2m, 0) 2 �2m,8.

3. For n � 4, Tn(x1, . . . , xn) := M2(M3
2 � 5M2M4 + 6M6) 2 �n,8.

4. For n � 4, Pn(x1, . . . , xn) := (nM4 � M

2
2 )(M

3
2 � 5M2M4 + 6M6)

2 �n,10.

5. For n � 3,
Rn(x1, . . . , xn) := (M3

2 � 3M2M4 + 2M6)(M3
2 � 5M2M4 + 6M6)

2 �n,12. ⇤
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Thank you for your attention!


