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> Let , be the set of n-ary 2d-ic forms that are positive
semidefinite (psd), respectively sum of squares (sos).
» Theorem (Hilbert, 1888): P29 = X, 24 if and only if n =2 or
2d =2or (n,2d) = (3,4).
» The arguments for Ppoq = ¥, 24 for n =2 and 2d = 2 were already
known in the late 19th century.
Hilbert proved P34 = X3 4.
> Conversely, Hilbert proved that X4 4 C Pa4 and 236 C P36, and
demonstrated that it is enough for all remaining cases, i.e.
Proposition [Reduction to Basic cases]:
If 24,4 C Paga and 23,6 C Pz, then Zn,2d C Pn,2d for all
n>3,2d > 4 and (n,2d) # (3,4).

Ildea of Proof:

f n+tj Zn i j > , d
f € Pnod \ Ln2d = { € Pntj2d \ Lnyj2d ¥ j > 0,an

x¥f € P 2d12i \ Tn, 2d42i ¥V i > 0. 0
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» Examples of psd not sos quaternary quartics and ternary sextics:

» (Motzkin, 1967)
M(x,y,z) = 2% + x*y? + x?y* = 3x%y?2% € P35\ T35
» (Robinson, 1969)
R(x,y,z) = x5 + yb + 26 — (x*y? + y*2% + 2%x2 + x2y* + y2 2%+
22x*) + 3x2y%22 € P36 \ L3,
W(x,y,z,w) = x?(x — w)? + (y(y —w)—2z(z - W))2 + 2yz(x+
y—w)(x+z—w)€EPras\Xsas

» (Choi and Lam, 1976)
Q(x,y,z,w) := w* + x%y? + y22% + 2°x% — dxyzw € Ps 4\ T4 4,
S(x,y,z) =x*y? + y*z2 + 25> = 3x2y?22 € P36\ L3
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variable has even degree.
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A n-ary 2d-ic form f is called
» symmetric if V 0 € Sy f(Xo(1), .-+ Xo(m) = F(X1,.. ., Xn).

» even symmetric if it is symmetric and in each term of f every
variable has even degree.

= {f € Fpoq4 | f is even symmetric and psd}
= {f € Fpoq | f is even symmetric and sos}
For what pairs (n,2d) will P, C S¥7,.7
Known:
» SPe,y=S%5,q ifn=2,d=1,(n2d)=(3,4), (n,4)p>4, (3,8)
, , >
(by Hilbert's Theorem) (C-L-R)  (Harris)
» SPS,, 2 SX; oy for (n,2d) = (n,6)n>3,(3,10),(4,8).
, 7 >

(C-L-R) (Harris)




2. Even Symmetric forms

» i.e. Known answer to Q(S°€):

deg\var |2 |3 |4 |5
2 VIV
4 VIV
6 Vx| x| x
8 VIV x |7
10 Vo Ix |77
12 VT
O O A

where, a tick (v') denotes a positive answer to Q(S€), a cross (x)
denotes a negative answer to Q(5€), and a (?) denotes an

unknown answer to Q(S¢).



2. Even Symmetric forms

» To get a complete answer to Q(S5¢), look at:

deg \ var

2

4

6

8

10

12

SNENENENENENENES
I PSRN ENENEE
I P P ENANEY
NN NN AN
NN

14

~
~J
~

(3,2d)g>6
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12 VAR Y O Y

14 V7?7?07

? ? ? ?

(37 2d)d26
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deg\var |2 |3 |4 |5 |6
2 VIV IVIVI|VY
4 VIV IVIVIY
6 VX | X | x| X
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10 V| X

12 v 7

14 v 7

(3,2d)g>6



2.1. Analogue of Hilbert's 1888 Theorem for
Even Symmetric forms

» Theorem (G., Kuhlmann, Reznick): SP;,, = S%7,, if and
onlyif n=2ord=1or(n,2d) = (n,3)p>4 or (3,8).



2.1. Analogue of Hilbert's 1888 Theorem for
Even Symmetric forms

» Theorem (G., Kuhlmann, Reznick): SP;,, = S%7,, if and
onlyif n=2ord=1or(n,2d) = (n,3)p>4 or (3,8).

> i.e.

deg\var |2 |3 |4 |5 |6
2 VIiVvIVvIiv Y
4 VIiVvIVvIiv VY
6 V| X | x| x| Xx
8 VIV | x| x| x
10 VI X | x| x| x
12 V| x| x| x| x
14 VI x| x| x| x




2.1. Analogue of Hilbert's 1888 Theorem for
Even Symmetric forms

> Theorem (G., Kuhlmann, Reznick): SP;,, = S¥?,, if and
onlyif n=2ord=1or (n,2d) = (n, 3),,>4 or (3,8).
» Proof:
» give a "Reduction to Basic Cases: (n.8),>5,(n,2d),>4.4-56"



2.1. Analogue of Hilbert's 1888 Theorem for
Even Symmetric forms

> Theorem (G., Kuhlmann, Reznick): SP;,, = S¥?,, if and
onlyif n=2ord=1or (n,2d) = (n, 3),,>4 or (3,8).
» Proof:
» give a "Reduction to Basic Cases: (1n,8),>5,(n,2d),>4.4-56" by
» finding appropriate indefinite irreducibleieven symm;tric forms



2.1. Analogue of Hilbert's 1888 Theorem for
Even Symmetric forms

> Theorem (G., Kuhlmann, Reznick): SP;,, = S¥?,, if and
onlyif n=2ord=1or (n,2d) = (n, 3),,>4 or (3, 8)
» Proof:
» give a "Reduction to Basic Cases: (1n,8),>5,(n,2d),>4.4-56" by
» finding appropriate indefinite irreducibleieven symm;tric forms,

> giving a Degree jumping principle



2.1. Analogue of Hilbert's 1888 Theorem for
Even Symmetric forms

> Theorem (G., Kuhlmann, Reznick): SP;,, = S¥?,, if and
onlyif n=2ord=1or (n,2d) = (n, 3),,>4 or (3, 8)
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Hilbert’s reduction:
(4,4),(3,6)

Degree jump:
Multiply by (x_1)"2i


Charu Goel
Hilbert’s reduction: (4,4),(3,6)
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> Theorem (G., Kuhlmann, Reznick): SP;,, = S¥?,, if and
onlyif n=2ord=1or (n,2d) = (n, 3),,>4 or (3,8).
» Proof:
» give a "Reduction to Basic Cases: (1n,8),>5,(n,2d),>4.4-56" by
» finding appropriate indefinite irreducibleieven symm;tric forms,

> giving a Degree jumping principle to find psd not sos even symmetric
2d + 4r (for integer r > 2), and

2d +2n

from given psd not sos even symmetric n—ary 2d—ic forms.

n—ary forms of degree

» construct explicit forms
> feSPrg\SXng for n>5,

> g€ SPr10\ SXh o forn >4,
> h S SP,?’]_Z \ 522’12 for n 2 4.



2.2. Degree jumping principle
» Lemma 1 (G. Kuhlmann, Reznick) For n > 3, the even
symmetric real forms p, =437 1 xt =173 ey x-2xj2 and

4 2.2.2
qn = Z_] 1% + 321<17éj<n j 100 Zl§l<1<k§nxixjxk are
irreducible over R.



2.2. Degree jumping principle
» Lemma 1 (G. Kuhlmann, Reznick) For n > 3, the even
symmetric real forms p, := 4377 x* — 1757, ., x,2x and
an ‘= ZJ 1% +3Zl<l;ﬁ_]<nxl4x 10021<I<}<k<nxlzx2xk are
irreducible over R.

» Lemma 2: Let f € Ppog \ Xp24 and p an irreducible indefinite
form of degree r in R[x1,...,x,]. Then p?f € Ph2d+2r \ Ln2d+2r



2.2. Degree jumping principle
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Let An72d = Sprizd \ 52272‘1
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Lemma 1 (G. Kuhlmann, Reznick) For n > 3, the even
symmetric real forms p, := 4377 x* — 1757, ., x,2x and

4 2.2
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irreducible over R.

Lemma 2: Let f € Ppog \ Lp24 and p an irreducible indefinite
form of degree r in R[x1,...,x,]. Then p?f € Ph2d+2r \ Ln2d+2r
Let Apag = SPr o \ ST} 04

Theorem (G. Kuhlmann, Reznick) [Degree Jumping Principle]:
Suppose f € Ap 24 for n > 3, then

(i) for any integer r > 2, the form p27q."f € A 2d.14r, Where
r=2a+3b;abeZ,,
(II) (X1 . .X”)2f S An,2d+2n-



2.2. Degree jumping principle
Lemma 1 (G. Kuhlmann, Reznick) For n > 3, the even
symmetric real forms p, := 4377 x* — 1757, ., x,2x and

4 2.2
an = ZJ 1 _j +3Zl<l;ﬁj<nxl X 100 Zl<l<}<k<nxl Xj Xk are
irreducible over R.

Lemma 2: Let f € Ppog \ Lp24 and p an irreducible indefinite
form of degree r in R[x1,...,x,]. Then p?f € Ph2d+2r \ Ln2d+2r
Let Apag = SPr o \ ST} 04

Theorem (G. Kuhlmann, Reznick) [Degree Jumping Principle]:
Suppose f € Ap 24 for n > 3, then

(i) for any integer r > 2, the form p27q."f € A 2d.14r, Where
r=2a+3b;abeZ,,

(II) (X1 .. .X,7)2f S An,2d+2n-
Proof follows from above Lemmas. O



» Proposition (G., Kuhlmann, Reznick) [Reduction to basic
cases]: If Apoq # @ for (n,8)n>4,(n,10),>3 and (n,12),>3, then
An,2d 75 & for (n, 2d)n23,d27-
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» Proposition (G., Kuhlmann, Reznick) [Reduction to basic
cases]: If Apoq # @ for (n,8)n>4,(n,10),>3 and (n,12),>3, then
Appg # @ for (n,2d)p>3,4>7-

» Proof:
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6
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» Proposition (G., Kuhlmann, Reznick): [Reduction to basic
cases|: If Apoq # @ for (n,8)n>4,(n,10),>3 and (n,12),>3, then
Appg # @ for (n,2d)p>3,a>7-

» Proof:

deg \ var
2; 4

6

8
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16
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» Proposition (G., Kuhlmann, Reznick) [Reduction to basic
cases|: If A, oq # @ for (n,8)n>4,(n,10),>3 and (n, 12),>3, then
Ap2g # @ for (n,2d)p>3,4>7

» Proof:

deg \ var
2: 4

6

8
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12

14
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» For m> 2, let

Lamis = m(m+1) 0 =)t = (06— 7).
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» For m> 2, let
Lami1:= m(m+1) > (x5 — x)* (Z(X/ - X)) )
i<j i<j
> Let M,(x1,...,xp) :=x{ + ...+ x], for an integer r > 1.
» Theorem (G., Kuhlmann, Reznick):
1. For m> 2, G2m+1 = L2m+1(X12, .. X22m+1) S A2m+178a
2. Form>2, D, := L2m+1(X12, . sz,O) S Agmg
3. For n > 4, Tn(Xl, o ,Xn) = M2(M23 — 5Mo M, + 6M6) S A,Lg.
4

. Forn>4, Py(x1,...,x,) := (nMy — M3)(M3 — 5MyMj + 6 M)
€ An1o.



2.3. Explicit examples completing answer to Q(S5¢)

» For m> 2, let
Lami1:= m(m+1) > (x5 — x)* (Z(X/ - X)) )
i<j i<j
> Let M,(x1,...,xp) :=x{ + ...+ x], for an integer r > 1.
» Theorem (G., Kuhlmann, Reznick):
1. For m> 2, G2m+1 = L2m+1(X12, .. X22m+1) S A2m+178a
2. Form>2, D, := L2m+1(X12, . sz,O) S Agmg
3. For n > 4, Tn(Xl, o ,Xn) = M2(M§) — 5Mo M, + 6M6) S A,Lg.
4

. Forn>4, Py(x1,...,x,) := (nMy — M3)(M3 — 5MyMj + 6 M)
€ An1o.

5. For n > 3,
R,,(Xl7 R 7X,,) = (M23 — 3MoM, + 2M6)(M23 — 5My My + 6M6)
S An,12-
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