The analogue of Hilbert's 1888 Theorem for even symmetric forms

Charu Goel University of Konstanz

(Joint with Salma Kuhlmann and Bruce Reznick)

Ordered Algebraic Structures and Related Topics CIRM - Luminy, France October 13th, 2015

Outline

Outline

1. Hilbert's 1888 Theorem

Outline

Let P_{n,2d}, Σ_{n,2d} be the set of n-ary 2d-ic forms that are positive semidefinite (psd), respectively sum of squares (sos).

- Let P_{n,2d}, Σ_{n,2d} be the set of n-ary 2d-ic forms that are positive semidefinite (psd), respectively sum of squares (sos).
- ► Theorem (Hilbert, 1888): $\mathcal{P}_{n,2d} = \Sigma_{n,2d}$ if and only if n = 2 or 2d = 2 or (n, 2d) = (3, 4).

- Let P_{n,2d}, Σ_{n,2d} be the set of n-ary 2d-ic forms that are positive semidefinite (psd), respectively sum of squares (sos).
- ► Theorem (Hilbert, 1888): $\mathcal{P}_{n,2d} = \Sigma_{n,2d}$ if and only if n = 2 or 2d = 2 or (n, 2d) = (3, 4).
 - ► The arguments for $\mathcal{P}_{n,2d} = \sum_{n,2d}$ for n = 2 and 2d = 2 were already known in the late 19th century.

- Let P_{n,2d}, Σ_{n,2d} be the set of n-ary 2d-ic forms that are positive semidefinite (psd), respectively sum of squares (sos).
- ► Theorem (Hilbert, 1888): $\mathcal{P}_{n,2d} = \Sigma_{n,2d}$ if and only if n = 2 or 2d = 2 or (n, 2d) = (3, 4).
 - ► The arguments for $\mathcal{P}_{n,2d} = \sum_{n,2d}$ for n = 2 and 2d = 2 were already known in the late 19th century.

Hilbert proved $\mathcal{P}_{3,4} = \Sigma_{3,4}$.

- Let P_{n,2d}, Σ_{n,2d} be the set of n-ary 2d-ic forms that are positive semidefinite (psd), respectively sum of squares (sos).
- ► Theorem (Hilbert, 1888): $\mathcal{P}_{n,2d} = \Sigma_{n,2d}$ if and only if n = 2 or 2d = 2 or (n, 2d) = (3, 4).
 - ► The arguments for $\mathcal{P}_{n,2d} = \sum_{n,2d}$ for n = 2 and 2d = 2 were already known in the late 19th century.

Hilbert proved $\mathcal{P}_{3,4} = \Sigma_{3,4}$.

Conversely,

- Let P_{n,2d}, Σ_{n,2d} be the set of n-ary 2d-ic forms that are positive semidefinite (psd), respectively sum of squares (sos).
- ► Theorem (Hilbert, 1888): $\mathcal{P}_{n,2d} = \Sigma_{n,2d}$ if and only if n = 2 or 2d = 2 or (n, 2d) = (3, 4).
 - ► The arguments for $\mathcal{P}_{n,2d} = \sum_{n,2d}$ for n = 2 and 2d = 2 were already known in the late 19th century.

Hilbert proved $\mathcal{P}_{3,4} = \Sigma_{3,4}$.

► Conversely, Hilbert proved that $\Sigma_{4,4} \subsetneq \mathcal{P}_{4,4}$ and $\Sigma_{3,6} \subsetneq \mathcal{P}_{3,6}$, and demonstrated that it is enough for all remaining cases, i.e.

- Let P_{n,2d}, Σ_{n,2d} be the set of n-ary 2d-ic forms that are positive semidefinite (psd), respectively sum of squares (sos).
- ► Theorem (Hilbert, 1888): $\mathcal{P}_{n,2d} = \Sigma_{n,2d}$ if and only if n = 2 or 2d = 2 or (n, 2d) = (3, 4).
 - ► The arguments for $\mathcal{P}_{n,2d} = \sum_{n,2d}$ for n = 2 and 2d = 2 were already known in the late 19th century.

Hilbert proved $\mathcal{P}_{3,4} = \Sigma_{3,4}$.

• Conversely, Hilbert proved that $\Sigma_{4,4} \subsetneq \mathcal{P}_{4,4}$ and $\Sigma_{3,6} \subsetneq \mathcal{P}_{3,6}$, and demonstrated that it is enough for all remaining cases, i.e.

Proposition [Reduction to Basic cases]: If $\Sigma_{4,4} \subsetneq \mathcal{P}_{4,4}$ and $\Sigma_{3,6} \subsetneq \mathcal{P}_{3,6}$, then $\Sigma_{n,2d} \subsetneq \mathcal{P}_{n,2d}$ for all $n \ge 3, 2d \ge 4$ and $(n, 2d) \ne (3, 4)$.

- Let P_{n,2d}, Σ_{n,2d} be the set of n-ary 2d-ic forms that are positive semidefinite (psd), respectively sum of squares (sos).
- ► Theorem (Hilbert, 1888): $\mathcal{P}_{n,2d} = \Sigma_{n,2d}$ if and only if n = 2 or 2d = 2 or (n, 2d) = (3, 4).
 - ► The arguments for $\mathcal{P}_{n,2d} = \sum_{n,2d}$ for n = 2 and 2d = 2 were already known in the late 19th century.

Hilbert proved $\mathcal{P}_{3,4} = \Sigma_{3,4}$.

► Conversely, Hilbert proved that $\Sigma_{4,4} \subsetneq \mathcal{P}_{4,4}$ and $\Sigma_{3,6} \subsetneq \mathcal{P}_{3,6}$, and demonstrated that it is enough for all remaining cases, i.e.

Proposition [Reduction to Basic cases]: If $\Sigma_{4,4} \subsetneq \mathcal{P}_{4,4}$ and $\Sigma_{3,6} \subsetneq \mathcal{P}_{3,6}$, then $\Sigma_{n,2d} \subsetneq \mathcal{P}_{n,2d}$ for all $n \ge 3, 2d \ge 4$ and $(n, 2d) \ne (3, 4)$.

Idea of Proof:

$$f \in \mathcal{P}_{n,2d} \setminus \Sigma_{n,2d} \Rightarrow \begin{cases} f \in \mathcal{P}_{n+j,2d} \setminus \Sigma_{n+j,2d} \ \forall \ j \ge 0, \end{cases}$$

- Let P_{n,2d}, Σ_{n,2d} be the set of n-ary 2d-ic forms that are positive semidefinite (psd), respectively sum of squares (sos).
- ► Theorem (Hilbert, 1888): $\mathcal{P}_{n,2d} = \Sigma_{n,2d}$ if and only if n = 2 or 2d = 2 or (n, 2d) = (3, 4).
 - ► The arguments for $\mathcal{P}_{n,2d} = \sum_{n,2d}$ for n = 2 and 2d = 2 were already known in the late 19th century.

Hilbert proved $\mathcal{P}_{3,4} = \Sigma_{3,4}$.

► Conversely, Hilbert proved that $\Sigma_{4,4} \subsetneq \mathcal{P}_{4,4}$ and $\Sigma_{3,6} \subsetneq \mathcal{P}_{3,6}$, and demonstrated that it is enough for all remaining cases, i.e.

Proposition [Reduction to Basic cases]: If $\Sigma_{4,4} \subsetneq \mathcal{P}_{4,4}$ and $\Sigma_{3,6} \subsetneq \mathcal{P}_{3,6}$, then $\Sigma_{n,2d} \subsetneq \mathcal{P}_{n,2d}$ for all $n \ge 3, 2d \ge 4$ and $(n, 2d) \ne (3, 4)$.

Idea of Proof:

$$f \in \mathcal{P}_{n,2d} \setminus \Sigma_{n,2d} \Rightarrow \begin{cases} f \in \mathcal{P}_{n+j,2d} \setminus \Sigma_{n+j,2d} \ \forall \ j \ge 0, \text{and} \\ x_1^{2i} f \in \mathcal{P}_{n, \ 2d+2i} \setminus \Sigma_{n, \ 2d+2i} \ \forall \ i \ge 0. \end{cases}$$

► Examples of psd not sos quaternary quartics and ternary sextics:

► Examples of psd not sos quaternary quartics and ternary sextics:

(Motzkin, 1967)

 $M(x,y,z) := z^6 + x^4 y^2 + x^2 y^4 - 3x^2 y^2 z^2 \in \mathcal{P}_{3,6} \setminus \Sigma_{3,6}$

Examples of psd not sos quaternary quartics and ternary sextics:

(Motzkin, 1967)

 $M(x,y,z) := z^6 + x^4 y^2 + x^2 y^4 - 3x^2 y^2 z^2 \in \mathcal{P}_{3,6} \setminus \Sigma_{3,6}$

(Robinson, 1969)

$$\begin{split} R(x,y,z) &:= x^{6} + y^{6} + z^{6} - (x^{4}y^{2} + y^{4}z^{2} + z^{4}x^{2} + x^{2}y^{4} + y^{2}z^{4} + z^{2}x^{4}) + 3x^{2}y^{2}z^{2} \in \mathcal{P}_{3,6} \setminus \Sigma_{3,6}, \\ W(x,y,z,w) &:= x^{2}(x-w)^{2} + (y(y-w) - z(z-w))^{2} + 2yz(x+y-w)(x+z-w) \in \mathcal{P}_{4,4} \setminus \Sigma_{4,4} \end{split}$$

Examples of psd not sos quaternary quartics and ternary sextics:

(Motzkin, 1967)

 $\textit{M}(x,y,z) := z^{6} + x^{4}y^{2} + x^{2}y^{4} - 3x^{2}y^{2}z^{2} \in \mathcal{P}_{3,6} \setminus \Sigma_{3,6}$

(Robinson, 1969)

$$\begin{aligned} R(x,y,z) &:= x^{6} + y^{6} + z^{6} - (x^{4}y^{2} + y^{4}z^{2} + z^{4}x^{2} + x^{2}y^{4} + y^{2}z^{4} + z^{2}x^{4}) + 3x^{2}y^{2}z^{2} \in \mathcal{P}_{3,6} \setminus \Sigma_{3,6}, \\ W(x,y,z,w) &:= x^{2}(x-w)^{2} + (y(y-w) - z(z-w))^{2} + 2yz(x+y-w)(x+z-w) \in \mathcal{P}_{4,4} \setminus \Sigma_{4,4} \end{aligned}$$

(Choi and Lam, 1976)

$$\begin{split} &Q(x,y,z,w) := w^4 + x^2y^2 + y^2z^2 + z^2x^2 - 4xyzw \in \mathcal{P}_{4,4} \setminus \Sigma_{4,4}, \\ &S(x,y,z) = x^4y^2 + y^4z^2 + z^4x^2 - 3x^2y^2z^2 \in \mathcal{P}_{3,6} \setminus \Sigma_{3,6} \end{split}$$

► A *n*-ary 2*d*-ic form *f* is called

▶ symmetric if $\forall \sigma \in S_n$: $f(x_{\sigma(1)}, \ldots, x_{\sigma(n)}) = f(x_1, \ldots, x_n)$.

- ► A *n*-ary 2*d*-ic form *f* is called
 - ▶ symmetric if $\forall \sigma \in S_n$: $f(x_{\sigma(1)}, \ldots, x_{\sigma(n)}) = f(x_1, \ldots, x_n)$.
 - even symmetric if it is symmetric and in each term of f every variable has even degree.

- ► A *n*-ary 2*d*-ic form *f* is called
 - ▶ symmetric if $\forall \sigma \in S_n$: $f(x_{\sigma(1)}, \ldots, x_{\sigma(n)}) = f(x_1, \ldots, x_n)$.
 - even symmetric if it is symmetric and in each term of f every variable has even degree.
- ▶ $S\mathcal{P}_{n,2d}^e := \{f \in \mathcal{F}_{n,2d} \mid f \text{ is even symmetric and psd} \}$

- ► A *n*-ary 2*d*-ic form *f* is called
 - ▶ symmetric if $\forall \sigma \in S_n$: $f(x_{\sigma(1)}, \ldots, x_{\sigma(n)}) = f(x_1, \ldots, x_n)$.
 - even symmetric if it is symmetric and in each term of f every variable has even degree.
- ▶ $S\mathcal{P}_{n,2d}^e := \{f \in \mathcal{F}_{n,2d} \mid f \text{ is even symmetric and psd} \}$
- $S\Sigma_{n,2d}^e := \{ f \in \mathcal{F}_{n,2d} \mid f \text{ is even symmetric and sos} \}$

- ► A *n*-ary 2*d*-ic form *f* is called
 - ▶ symmetric if $\forall \sigma \in S_n$: $f(x_{\sigma(1)}, \ldots, x_{\sigma(n)}) = f(x_1, \ldots, x_n)$.
 - even symmetric if it is symmetric and in each term of f every variable has even degree.
- ▶ $S\mathcal{P}_{n,2d}^e := \{f \in \mathcal{F}_{n,2d} \mid f \text{ is even symmetric and psd} \}$
- $S\Sigma_{n,2d}^e := \{ f \in \mathcal{F}_{n,2d} \mid f \text{ is even symmetric and sos} \}$
- ▶ $Q(S^e)$: For what pairs (n, 2d) will $SP^e_{n, 2d} \subseteq S\Sigma^e_{n, 2d}$?

- ► A *n*-ary 2*d*-ic form *f* is called
 - ▶ symmetric if $\forall \sigma \in S_n$: $f(x_{\sigma(1)}, \ldots, x_{\sigma(n)}) = f(x_1, \ldots, x_n)$.
 - even symmetric if it is symmetric and in each term of f every variable has even degree.
- ▶ $SP_{n,2d}^e := \{f \in \mathcal{F}_{n,2d} \mid f \text{ is even symmetric and psd}\}$
- ► $S\Sigma_{n,2d}^e := \{f \in \mathcal{F}_{n,2d} \mid f \text{ is even symmetric and sos}\}$
- ▶ $Q(S^e)$: For what pairs (n, 2d) will $SP^e_{n, 2d} \subseteq S\Sigma^e_{n, 2d}$?
- Known:

►
$$SP_{n,2d}^e = S\Sigma_{n,2d}^e$$
 if $\underbrace{n = 2, d = 1, (n, 2d) = (3, 4)}_{\text{(by Hilbert's Theorem)}}$

- ► A *n*-ary 2*d*-ic form *f* is called
 - ▶ symmetric if $\forall \sigma \in S_n$: $f(x_{\sigma(1)}, \ldots, x_{\sigma(n)}) = f(x_1, \ldots, x_n)$.
 - even symmetric if it is symmetric and in each term of f every variable has even degree.
- ▶ $SP_{n,2d}^e := \{f \in \mathcal{F}_{n,2d} \mid f \text{ is even symmetric and psd}\}$
- ► $S\Sigma_{n,2d}^e := \{f \in \mathcal{F}_{n,2d} \mid f \text{ is even symmetric and sos}\}$
- ▶ $Q(S^e)$: For what pairs (n, 2d) will $SP^e_{n, 2d} \subseteq S\Sigma^e_{n, 2d}$?
- Known:

$$\blacktriangleright S\mathcal{P}_{n,2d}^e = S\Sigma_{n,2d}^e \text{ if } \underbrace{n=2, d=1, (n,2d)=(3,4)}_{\text{(by Hilbert's Theorem)}}, \underbrace{(n,4)_{n\geq 4}}_{\text{(C-L-R)}}$$

- ► A *n*-ary 2*d*-ic form *f* is called
 - ▶ symmetric if $\forall \sigma \in S_n$: $f(x_{\sigma(1)}, \ldots, x_{\sigma(n)}) = f(x_1, \ldots, x_n)$.
 - even symmetric if it is symmetric and in each term of f every variable has even degree.
- ▶ $SP_{n,2d}^e := \{f \in \mathcal{F}_{n,2d} \mid f \text{ is even symmetric and psd}\}$
- ► $S\Sigma_{n,2d}^e := \{f \in \mathcal{F}_{n,2d} \mid f \text{ is even symmetric and sos}\}$
- ▶ $Q(S^e)$: For what pairs (n, 2d) will $SP^e_{n, 2d} \subseteq S\Sigma^e_{n, 2d}$?
- Known:

$$\blacktriangleright S\mathcal{P}_{n,2d}^e = S\Sigma_{n,2d}^e \text{ if } \underbrace{n=2, d=1, (n,2d)=(3,4)}_{\text{(by Hilbert's Theorem)}}, \underbrace{(n,4)_{n\geq 4}}_{\text{(C-L-R)}}, \underbrace{(3,8)}_{\text{(Harris)}}$$

- ► A *n*-ary 2*d*-ic form *f* is called
 - ▶ symmetric if $\forall \sigma \in S_n$: $f(x_{\sigma(1)}, \ldots, x_{\sigma(n)}) = f(x_1, \ldots, x_n)$.
 - even symmetric if it is symmetric and in each term of f every variable has even degree.
- ▶ $S\mathcal{P}_{n,2d}^e := \{f \in \mathcal{F}_{n,2d} \mid f \text{ is even symmetric and psd} \}$
- ► $S\Sigma_{n,2d}^e := \{f \in \mathcal{F}_{n,2d} \mid f \text{ is even symmetric and sos}\}$
- ▶ $Q(S^e)$: For what pairs (n, 2d) will $SP^e_{n, 2d} \subseteq S\Sigma^e_{n, 2d}$?
- Known:

►
$$S\mathcal{P}_{n,2d}^e = S\Sigma_{n,2d}^e$$
 if $\underbrace{n=2, d=1, (n,2d) = (3,4)}_{\text{(by Hilbert's Theorem)}}, \underbrace{(n,4)_{n\geq 4}}_{\text{(C-L-R)}}, \underbrace{(3,8)}_{\text{(Harris)}}$
► $S\mathcal{P}_{n,2d}^e \supseteq S\Sigma_{n,2d}^e$ for $(n,2d) = \underbrace{(n,6)_{n\geq 3}}_{\text{(C-L-R)}}$

- ► A *n*-ary 2*d*-ic form *f* is called
 - ▶ symmetric if $\forall \sigma \in S_n$: $f(x_{\sigma(1)}, \ldots, x_{\sigma(n)}) = f(x_1, \ldots, x_n)$.
 - even symmetric if it is symmetric and in each term of f every variable has even degree.
- ▶ $SP_{n,2d}^e := \{f \in \mathcal{F}_{n,2d} \mid f \text{ is even symmetric and psd}\}$
- ► $S\Sigma_{n,2d}^e := \{f \in \mathcal{F}_{n,2d} \mid f \text{ is even symmetric and sos}\}$
- ▶ $Q(S^e)$: For what pairs (n, 2d) will $SP^e_{n, 2d} \subseteq S\Sigma^e_{n, 2d}$?
- Known:

►
$$S\mathcal{P}_{n,2d}^e = S\Sigma_{n,2d}^e$$
 if $\underbrace{n=2, d=1, (n,2d) = (3,4)}_{\text{(by Hilbert's Theorem)}}, \underbrace{(n,4)_{n\geq 4}}_{\text{(C-L-R)}}, \underbrace{(3,8)}_{\text{(Harris)}}$
► $S\mathcal{P}_{n,2d}^e \supseteq S\Sigma_{n,2d}^e$ for $(n,2d) = \underbrace{(n,6)_{n\geq 3}}_{\text{(C-L-R)}}, (3,10)$

- ► A *n*-ary 2*d*-ic form *f* is called
 - ▶ symmetric if $\forall \sigma \in S_n$: $f(x_{\sigma(1)}, \ldots, x_{\sigma(n)}) = f(x_1, \ldots, x_n)$.
 - even symmetric if it is symmetric and in each term of f every variable has even degree.
- ▶ $SP_{n,2d}^e := \{f \in \mathcal{F}_{n,2d} \mid f \text{ is even symmetric and psd}\}$
- ► $S\Sigma_{n,2d}^e := \{f \in \mathcal{F}_{n,2d} \mid f \text{ is even symmetric and sos}\}$
- ▶ $Q(S^e)$: For what pairs (n, 2d) will $SP^e_{n, 2d} \subseteq S\Sigma^e_{n, 2d}$?
- Known:

$$S\mathcal{P}_{n,2d}^{e} = S\Sigma_{n,2d}^{e} \text{ if } \underbrace{n = 2, d = 1, (n, 2d) = (3, 4)}_{\text{(by Hilbert's Theorem)}}, \underbrace{(n, 4)_{n \ge 4}}_{\text{(C-L-R)}}, \underbrace{(3, 8)}_{\text{(Harris)}}$$
$$S\mathcal{P}_{n,2d}^{e} \supseteq S\Sigma_{n,2d}^{e} \text{ for } (n, 2d) = \underbrace{(n, 6)_{n \ge 3}}_{\text{(C-L-R)}}, \underbrace{(3, 10), (4, 8)}_{\text{(Harris)}}.$$

• i.e. Known answer to $\mathcal{Q}(S^e)$:

$deg \setminus var$	2	3	4	5	
2	\checkmark	\checkmark	\checkmark	\checkmark	
4	\checkmark	\checkmark	\checkmark	\checkmark	
6	\checkmark	×	×	×	
8	\checkmark	\checkmark	×	?	?
10	\checkmark	×	?	?	?
12	\checkmark	?	?	?	?
:	:	?	?	?	?

where, a tick (\checkmark) denotes a positive answer to $\mathcal{Q}(S^e)$, a cross (\times) denotes a negative answer to $\mathcal{Q}(S^e)$, and a (?) denotes an unknown answer to $\mathcal{Q}(S^e)$.

• To get a complete answer to $\mathcal{Q}(S^e)$, look at:

$deg \setminus var$	2	3	4	5				
2	\checkmark	\checkmark	\checkmark	\checkmark				
4	\checkmark	\checkmark	\checkmark	\checkmark				
6	\checkmark	×	×	×				
8	\checkmark	\checkmark	×	?	?			
10	\checkmark	×	?	?	?			
12	\checkmark	?	?	?	?			
14	\checkmark	?	?	?	?			
		:	?	?	?			
$(3,2d)_{d\geq 6}$								

• To get a complete answer to $\mathcal{Q}(S^e)$, look at:

• To get a complete answer to $\mathcal{Q}(S^e)$, look at:

2.1. Analogue of Hilbert's 1888 Theorem for Even Symmetric forms

► Theorem (G., Kuhlmann, Reznick): $S\mathcal{P}_{n,2d}^e = S\Sigma_{n,2d}^e$ if and only if n = 2 or d = 1 or $(n, 2d) = (n, 3)_{n \ge 4}$ or (3, 8).
► Theorem (G., Kuhlmann, Reznick): $S\mathcal{P}_{n,2d}^e = S\Sigma_{n,2d}^e$ if and only if n = 2 or d = 1 or $(n, 2d) = (n, 3)_{n \ge 4}$ or (3, 8).

▶ i.e.

$deg \setminus var$	2	3	4	5	6	
2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
6	\checkmark	×	×	×	×	
8	\checkmark	\checkmark	×	×	×	
10	\checkmark	×	×	×	×	
12	\checkmark	×	×	×	×	
14	\checkmark	×	×	×	×	
	:	÷	:	:	:	· · .

- ► Theorem (G., Kuhlmann, Reznick): $S\mathcal{P}_{n,2d}^e = S\Sigma_{n,2d}^e$ if and only if n = 2 or d = 1 or $(n, 2d) = (n, 3)_{n \ge 4}$ or (3, 8).
- Proof:
 - give a "Reduction to Basic Cases: $(n, 8)_{n \ge 5}, (n, 2d)_{n \ge 4, d=5,6}$ "

- ► Theorem (G., Kuhlmann, Reznick): $S\mathcal{P}_{n,2d}^e = S\Sigma_{n,2d}^e$ if and only if n = 2 or d = 1 or $(n, 2d) = (n, 3)_{n \ge 4}$ or (3, 8).
- Proof:
 - ▶ give a "Reduction to Basic Cases: $(n, 8)_{n \ge 5}, (n, 2d)_{n \ge 4, d=5,6}$ " by
 - finding appropriate indefinite irreducible even symmetric forms

- ► Theorem (G., Kuhlmann, Reznick): $S\mathcal{P}_{n,2d}^e = S\Sigma_{n,2d}^e$ if and only if n = 2 or d = 1 or $(n, 2d) = (n, 3)_{n \ge 4}$ or (3, 8).
- Proof:
 - ▶ give a "Reduction to Basic Cases: $(n, 8)_{n \ge 5}, (n, 2d)_{n \ge 4, d=5,6}$ " by
 - finding appropriate indefinite irreducible even symmetric forms,
 - giving a Degree jumping principle

- ► Theorem (G., Kuhlmann, Reznick): $S\mathcal{P}_{n,2d}^e = S\Sigma_{n,2d}^e$ if and only if n = 2 or d = 1 or $(n, 2d) = (n, 3)_{n \ge 4}$ or (3, 8).
- Proof:
 - ▶ give a "Reduction to Basic Cases: $(n, 8)_{n \ge 5}, (n, 2d)_{n \ge 4, d=5,6}$ " by
 - finding appropriate indefinite irreducible even symmetric forms,
 - giving a Degree jumping principle

- ► Theorem (G., Kuhlmann, Reznick): $S\mathcal{P}_{n,2d}^e = S\Sigma_{n,2d}^e$ if and only if n = 2 or d = 1 or $(n, 2d) = (n, 3)_{n \ge 4}$ or (3, 8).
- Proof:
 - ▶ give a "Reduction to Basic Cases: $(n, 8)_{n \ge 5}, (n, 2d)_{n \ge 4, d=5,6}$ " by
 - finding appropriate indefinite irreducible even symmetric forms,
 - ▶ giving a Degree jumping principle to find psd not sos even symmetric *n*-ary forms of degree $\begin{cases} 2d + 4r \text{ (for integer } r \ge 2), \text{ and} \\ 2d + 2n \end{cases}$

- ► Theorem (G., Kuhlmann, Reznick): $S\mathcal{P}_{n,2d}^e = S\Sigma_{n,2d}^e$ if and only if n = 2 or d = 1 or $(n, 2d) = (n, 3)_{n \ge 4}$ or (3, 8).
- Proof:
 - ▶ give a "Reduction to Basic Cases: $(n, 8)_{n \ge 5}, (n, 2d)_{n \ge 4, d=5,6}$ " by
 - finding appropriate indefinite irreducible even symmetric forms,
 - ▶ giving a Degree jumping principle to find psd not sos even symmetric *n*-ary forms of degree $\begin{cases} 2d + 4r \text{ (for integer } r \ge 2), \text{ and} \\ 2d + 2n \end{cases}$

from given psd not sos even symmetric n-ary 2d-ic forms.

construct explicit forms

- ► Theorem (G., Kuhlmann, Reznick): $S\mathcal{P}_{n,2d}^e = S\Sigma_{n,2d}^e$ if and only if n = 2 or d = 1 or $(n, 2d) = (n, 3)_{n \ge 4}$ or (3, 8).
- Proof:
 - ▶ give a "Reduction to Basic Cases: $(n, 8)_{n \ge 5}, (n, 2d)_{n \ge 4, d=5,6}$ " by
 - finding appropriate indefinite irreducible even symmetric forms,
 - ▶ giving a Degree jumping principle to find psd not sos even symmetric *n*-ary forms of degree $\begin{cases} 2d + 4r \text{ (for integer } r \ge 2), \text{ and} \\ 2d + 2n \end{cases}$

- construct explicit forms
 - $f \in S\mathcal{P}_{n,8}^e \setminus S\Sigma_{n,8}^e$ for $n \geq 5$,

- ► Theorem (G., Kuhlmann, Reznick): $S\mathcal{P}_{n,2d}^e = S\Sigma_{n,2d}^e$ if and only if n = 2 or d = 1 or $(n, 2d) = (n, 3)_{n \ge 4}$ or (3, 8).
- Proof:
 - ▶ give a "Reduction to Basic Cases: $(n, 8)_{n \ge 5}, (n, 2d)_{n \ge 4, d=5,6}$ " by
 - finding appropriate indefinite irreducible even symmetric forms,
 - ▶ giving a Degree jumping principle to find psd not sos even symmetric *n*-ary forms of degree $\begin{cases} 2d + 4r \text{ (for integer } r \ge 2), \text{ and} \\ 2d + 2n \end{cases}$

- construct explicit forms
 - $f \in S\mathcal{P}_{n,8}^e \setminus S\Sigma_{n,8}^e$ for $n \geq 5$,
 - $g \in S\mathcal{P}_{n,10}^e \setminus S\Sigma_{n,10}^e$ for $n \geq 4$,

- ► Theorem (G., Kuhlmann, Reznick): $S\mathcal{P}_{n,2d}^e = S\Sigma_{n,2d}^e$ if and only if n = 2 or d = 1 or $(n, 2d) = (n, 3)_{n \ge 4}$ or (3, 8).
- Proof:
 - ▶ give a "Reduction to Basic Cases: $(n, 8)_{n \ge 5}, (n, 2d)_{n \ge 4, d=5,6}$ " by
 - finding appropriate indefinite irreducible even symmetric forms,
 - ▶ giving a Degree jumping principle to find psd not sos even symmetric *n*-ary forms of degree $\begin{cases} 2d + 4r \text{ (for integer } r \ge 2), \text{ and} \\ 2d + 2n \end{cases}$

- construct explicit forms
 - $f \in S\mathcal{P}_{n,8}^e \setminus S\Sigma_{n,8}^e$ for $n \geq 5$,
 - $g \in S\mathcal{P}_{n,10}^e \setminus S\Sigma_{n,10}^e$ for $n \geq 4$,
 - $h \in S\mathcal{P}_{n,12}^e \setminus S\Sigma_{n,12}^e$ for $n \ge 4$.

▶ Lemma 1 (G. Kuhlmann, Reznick): For $n \ge 3$, the even symmetric real forms $p_n := 4 \sum_{j=1}^n x_j^4 - 17 \sum_{1 \le i < j \le n} x_i^2 x_j^2$ and $q_n := \sum_{j=1}^n x_j^6 + 3 \sum_{1 \le i \ne j \le n} x_i^4 x_j^2 - 100 \sum_{1 \le i < j < k \le n} x_i^2 x_j^2 x_k^2$ are irreducible over \mathbb{R} .

- ▶ Lemma 1 (G. Kuhlmann, Reznick): For $n \ge 3$, the even symmetric real forms $p_n := 4 \sum_{j=1}^n x_j^4 17 \sum_{1 \le i < j \le n} x_i^2 x_j^2$ and $q_n := \sum_{j=1}^n x_j^6 + 3 \sum_{1 \le i \ne j \le n} x_i^4 x_j^2 100 \sum_{1 \le i < j < k \le n} x_i^2 x_j^2 x_k^2$ are irreducible over \mathbb{R} .
- ► Lemma 2: Let $f \in \mathcal{P}_{n,2d} \setminus \Sigma_{n,2d}$ and p an irreducible indefinite form of degree r in $\mathbb{R}[x_1, \ldots, x_n]$. Then $p^2 f \in \mathcal{P}_{n,2d+2r} \setminus \Sigma_{n,2d+2r}$.

- ▶ Lemma 1 (G. Kuhlmann, Reznick): For $n \ge 3$, the even symmetric real forms $p_n := 4 \sum_{j=1}^n x_j^4 17 \sum_{1 \le i < j \le n} x_i^2 x_j^2$ and $q_n := \sum_{j=1}^n x_j^6 + 3 \sum_{1 \le i \ne j \le n} x_i^4 x_j^2 100 \sum_{1 \le i < j < k \le n} x_i^2 x_j^2 x_k^2$ are irreducible over \mathbb{R} .
- ▶ Lemma 2: Let $f \in \mathcal{P}_{n,2d} \setminus \Sigma_{n,2d}$ and p an irreducible indefinite form of degree r in $\mathbb{R}[x_1, \ldots, x_n]$. Then $p^2 f \in \mathcal{P}_{n,2d+2r} \setminus \Sigma_{n,2d+2r}$.
- Let $\Delta_{n,2d} := S\mathcal{P}^{e}_{n,2d} \setminus S\Sigma^{e}_{n,2d}$

- ▶ Lemma 1 (G. Kuhlmann, Reznick): For $n \ge 3$, the even symmetric real forms $p_n := 4 \sum_{j=1}^n x_j^4 - 17 \sum_{1 \le i < j \le n} x_i^2 x_j^2$ and $q_n := \sum_{j=1}^n x_j^6 + 3 \sum_{1 \le i \ne j \le n} x_i^4 x_j^2 - 100 \sum_{1 \le i < j < k \le n} x_i^2 x_j^2 x_k^2$ are irreducible over \mathbb{R} .
- ▶ Lemma 2: Let $f \in \mathcal{P}_{n,2d} \setminus \Sigma_{n,2d}$ and p an irreducible indefinite form of degree r in $\mathbb{R}[x_1, \ldots, x_n]$. Then $p^2 f \in \mathcal{P}_{n,2d+2r} \setminus \Sigma_{n,2d+2r}$.

• Let
$$\Delta_{n,2d} := S\mathcal{P}^{e}_{n,2d} \setminus S\Sigma^{e}_{n,2d}$$

 Theorem (G. Kuhlmann, Reznick) [Degree Jumping Principle]: Suppose f ∈ Δ_{n,2d} for n ≥ 3, then

 (i) for any integer r ≥ 2, the form p_n^{2a}q_n^{2b}f ∈ Δ_{n,2d+4r}, where r = 2a + 3b; a, b ∈ Z₊,
 (ii) (x₁...x_n)²f ∈ Δ_{n,2d+2n}.

- ▶ Lemma 1 (G. Kuhlmann, Reznick): For $n \ge 3$, the even symmetric real forms $p_n := 4 \sum_{j=1}^n x_j^4 - 17 \sum_{1 \le i < j \le n} x_i^2 x_j^2$ and $q_n := \sum_{j=1}^n x_j^6 + 3 \sum_{1 \le i \ne j \le n} x_i^4 x_j^2 - 100 \sum_{1 \le i < j < k \le n} x_i^2 x_j^2 x_k^2$ are irreducible over \mathbb{R} .
- ► Lemma 2: Let $f \in \mathcal{P}_{n,2d} \setminus \Sigma_{n,2d}$ and p an irreducible indefinite form of degree r in $\mathbb{R}[x_1, \ldots, x_n]$. Then $p^2 f \in \mathcal{P}_{n,2d+2r} \setminus \Sigma_{n,2d+2r}$.

• Let
$$\Delta_{n,2d} := S\mathcal{P}^{e}_{n,2d} \setminus S\Sigma^{e}_{n,2d}$$

Theorem (G. Kuhlmann, Reznick) [Degree Jumping Principle]:

Suppose $f \in \Delta_{n,2d}$ for $n \ge 3$, then (i) for any integer $r \ge 2$, the form $p_n^{2a}q_n^{2b}f \in \Delta_{n,2d+4r}$, where r = 2a + 3b; $a, b \in \mathbb{Z}_+$, (ii) $(x_1 \dots x_n)^2 f \in \Delta_{n,2d+2n}$.

Proof follows from above Lemmas.

▶ Proposition (G., Kuhlmann, Reznick) [Reduction to basic cases]: If $\Delta_{n,2d} \neq \emptyset$ for $(n, 8)_{n \ge 4}$, $(n, 10)_{n \ge 3}$ and $(n, 12)_{n \ge 3}$, then $\Delta_{n,2d} \neq \emptyset$ for $(n, 2d)_{n \ge 3, d \ge 7}$.

- Proposition (G., Kuhlmann, Reznick) [Reduction to basic cases]: If Δ_{n,2d} ≠ Ø for (n, 8)_{n≥4}, (n, 10)_{n≥3} and (n, 12)_{n≥3}, then Δ_{n,2d} ≠ Ø for (n, 2d)_{n≥3,d≥7}.
- Proof:

Proposition (G., Kuhlmann, Reznick) [Reduction to basic cases]: If Δ_{n,2d} ≠ Ø for (n, 8)_{n≥4}, (n, 10)_{n≥3} and (n, 12)_{n≥3}, then Δ_{n,2d} ≠ Ø for (n, 2d)_{n≥3,d≥7}.

Proof:

$deg \setminus var$	2	3
2; 4	\checkmark	\checkmark
6	\checkmark	×
8	\checkmark	\checkmark
10	\checkmark	×
12	\checkmark	
14	\checkmark	
16	\checkmark	
18	\checkmark	
	÷	

- ▶ Proposition (G., Kuhlmann, Reznick): [Reduction to basic cases]: If $\Delta_{n,2d} \neq \emptyset$ for $(n, 8)_{n \ge 4}$, $(n, 10)_{n \ge 3}$ and $(n, 12)_{n \ge 3}$, then $\Delta_{n,2d} \neq \emptyset$ for $(n, 2d)_{n \ge 3, d \ge 7}$.
- Proof:

$deg \setminus var$	2	3
2; 4	\checkmark	\checkmark
6	\checkmark	×
8	\checkmark	\checkmark
10	\checkmark	×
12	\checkmark	$\times^{(2)}_{6+6}$
14	\checkmark	
16	\checkmark	
18	\checkmark	
:	:	

Proposition (G., Kuhlmann, Reznick) [Reduction to basic cases]: If Δ_{n,2d} ≠ Ø for (n, 8)_{n≥4}, (n, 10)_{n≥3} and (n, 12)_{n≥3}, then Δ_{n,2d} ≠ Ø for (n, 2d)_{n≥3,d≥7}.

Proof:

$deg \setminus var$	2	3
2; 4	\checkmark	\checkmark
6	\checkmark	×
8	\checkmark	\checkmark
10	\checkmark	×
12	\checkmark	$\times^{(2)}_{6+6}$
14	\checkmark	$ imes^{(1)}_{6+8}$
16	\checkmark	
18	\checkmark	
:	:	

- ▶ Proposition (G., Kuhlmann, Reznick) [Reduction to basic cases]: If $\Delta_{n,2d} \neq \emptyset$ for $(n, 8)_{n \ge 4}$, $(n, 10)_{n \ge 3}$ and $(n, 12)_{n \ge 3}$, then $\Delta_{n,2d} \neq \emptyset$ for $(n, 2d)_{n \ge 3, d \ge 7}$.
- Proof:

$deg \setminus var$	2	3
2; 4	\checkmark	\checkmark
6	\checkmark	×
8	\checkmark	\checkmark
10	\checkmark	×
12	\checkmark	$\times^{(2)}_{6+6}$
14	\checkmark	$\times^{(1)}_{6+8}$
16	\checkmark	$\times^{(2)}_{10+6}$
18	\checkmark	$\times^{(2)}_{12+6}$
	:	

Proposition (G., Kuhlmann, Reznick) [Reduction to basic cases]: If Δ_{n,2d} ≠ Ø for (n, 8)_{n≥4}, (n, 10)_{n≥3} and (n, 12)_{n≥3}, then Δ_{n,2d} ≠ Ø for (n, 2d)_{n≥3}, d≥7.

Proof:

2	3
\checkmark	\checkmark
\checkmark	×
\checkmark	\checkmark
\checkmark	×
\checkmark	$\times^{(2)}_{6+6}$
\checkmark	$\times^{(1)}_{6+8}$
\checkmark	$\times^{(2)}_{10+6}$
\checkmark	$\times^{(2)}_{12+6}$
:	(2)
	2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

- Proposition (G., Kuhlmann, Reznick) [Reduction to basic cases]: If Δ_{n,2d} ≠ Ø for (n, 8)_{n≥4}, (n, 10)_{n≥3} and (n, 12)_{n≥3}, then Δ_{n,2d} ≠ Ø for (n, 2d)_{n≥3,d≥7}.
- Proof:

$deg \setminus var$	2	3	4
2; 4	\checkmark	\checkmark	\checkmark
6	\checkmark	×	×
8	\checkmark	\checkmark	×
10	\checkmark	×	
12	\checkmark	$\times^{(2)}_{6+6}$	
14	\checkmark	$ imes_{6+8}^{(1)}$	
16	\checkmark	$\times^{(2)}_{10+6}$	
18	\checkmark	$\times^{(2)}_{12+6}$	
:	:	(2) (+6)	

- Proposition (G., Kuhlmann, Reznick) [Reduction to basic cases]: If Δ_{n,2d} ≠ Ø for (n, 8)_{n≥4}, (n, 10)_{n≥3} and (n, 12)_{n≥3}, then Δ_{n,2d} ≠ Ø for (n, 2d)_{n≥3,d≥7}.
- ► Proof:

$deg \setminus var$	2	3	4
2; 4	\checkmark	\checkmark	\checkmark
6	\checkmark	×	×
8	\checkmark	\checkmark	×
10	\checkmark	×	
12	\checkmark	$\times^{(2)}_{6+6}$	
14	\checkmark	$\times^{(1)}_{6+8}$	$\times^{(1)}_{6+8}$
16	\checkmark	$\times^{(2)}_{10+6}$	$\times^{(1)}_{8+8}$
18	\checkmark	$\times^{(2)}_{12+6}$	
	:	(2) (+6)	

- Proposition (G., Kuhlmann, Reznick) [Reduction to basic cases]: If Δ_{n,2d} ≠ Ø for (n, 8)_{n≥4}, (n, 10)_{n≥3} and (n, 12)_{n≥3}, then Δ_{n,2d} ≠ Ø for (n, 2d)_{n≥3}, d≥7.
- ► Proof:

$deg \setminus var$	2	3	4
2; 4	\checkmark	\checkmark	\checkmark
6	\checkmark	×	×
8	\checkmark	\checkmark	×
10	\checkmark	×	
12	\checkmark	$\times^{(2)}_{6+6}$	
14	\checkmark	$\times^{(1)}_{6+8}$	$ imes_{6+8}^{(1)}$
16	\checkmark	$\times^{(2)}_{10+6}$	$ imes^{(1)}_{8+8}$
18	\checkmark	$\times^{(2)}_{12+6}$	$\times^{(1)}_{6+12}$
	:	(2) (+6)	$\left \begin{array}{c} (1) \\ \cdot \\ +4r \end{array} \right $

- ▶ Proposition (G., Kuhlmann, Reznick) [Reduction to basic cases]: If $\Delta_{n,2d} \neq \emptyset$ for $(n, 8)_{n \ge 4}$, $(n, 10)_{n \ge 3}$ and $(n, 12)_{n \ge 3}$, then $\Delta_{n,2d} \neq \emptyset$ for $(n, 2d)_{n \ge 3, d \ge 7}$.
- Proof:

$deg \setminus var$	2	3	4	5	
2; 4	\checkmark	\checkmark	\checkmark	\checkmark	
6	\checkmark	×	×	×	
8	\checkmark	\checkmark	×	×	
10	\checkmark	×			
12	\checkmark	$\times^{(2)}_{6+6}$			
14	\checkmark	$ imes_{6+8}^{(1)}$	$ imes_{6+8}^{(1)}$	$ imes_{6+8}^{(1)}$	
16	\checkmark	$\times^{(2)}_{10+6}$	$\times^{(1)}_{8+8}$	$ imes^{(1)}_{8+8}$	
18	\checkmark	$ imes_{12+6}^{(2)}$	$ imes_{6+12}^{(1)}$	$ imes_{6+12}^{(1)}$	
:	:	(2) : ₊₆	$\left \begin{array}{c} (1) \\ +4r \end{array} \right $	$\left \begin{array}{c} (1) \\ +4r \end{array} \right $	·

- ▶ Proposition (G., Kuhlmann, Reznick) [Reduction to basic cases]: If $\Delta_{n,2d} \neq \emptyset$ for $(n, 8)_{n \ge 4}$, $(n, 10)_{n \ge 3}$ and $(n, 12)_{n \ge 3}$, then $\Delta_{n,2d} \neq \emptyset$ for $(n, 2d)_{n \ge 3, d \ge 7}$.
- Proof:

deg \setminus var	2	3	4	5	
2; 4	\checkmark	\checkmark	\checkmark	\checkmark	
6	\checkmark	×	×	×	
8	\checkmark	\checkmark	×	×	
10	\checkmark	×	×	×	
12	\checkmark	$\times^{(2)}_{6+6}$	×	×	
14	\checkmark	$ imes_{6+8}^{(1)}$	$ imes_{6+8}^{(1)}$	$ imes_{6+8}^{(1)}$	
16	\checkmark	$ imes_{10+6}^{(2)}$	$ imes^{(1)}_{8+8}$	$ imes^{(1)}_{8+8}$	
18	\checkmark	$\times^{(2)}_{12+6}$	$ imes_{6+12}^{(1)}$	$ imes_{6+12}^{(1)}$	
	:	(2) (+6)	(1) = +4r	$(1)_{+4r}$	·

For $m \ge 2$, let

$$L_{2m+1} := m(m+1) \sum_{i < j} (x_i - x_j)^4 - \Big(\sum_{i < j} (x_i - x_j)^2\Big)^2$$

- For $m \ge 2$, let $L_{2m+1} := m(m+1) \sum_{i < j} (x_i - x_j)^4 - \left(\sum_{i < j} (x_i - x_j)^2\right)^2$
- Let $M_r(x_1,\ldots,x_n) := x_1^r + \ldots + x_n^r$ for an integer $r \ge 1$.

- For $m \ge 2$, let $L_{2m+1} := m(m+1) \sum_{i < j} (x_i - x_j)^4 - \left(\sum_{i < j} (x_i - x_j)^2\right)^2$
- Let $M_r(x_1,\ldots,x_n) := x_1^r + \ldots + x_n^r$ for an integer $r \ge 1$.
- ► Theorem (G., Kuhlmann, Reznick): 1. For $m \ge 2$, $G_{2m+1} := L_{2m+1}(x_1^2, \dots, x_{2m+1}^2) \in \Delta_{2m+1,8}$,

- For $m \ge 2$, let $L_{2m+1} := m(m+1) \sum_{i < j} (x_i - x_j)^4 - \left(\sum_{i < j} (x_i - x_j)^2\right)^2$
- Let $M_r(x_1,\ldots,x_n) := x_1^r + \ldots + x_n^r$ for an integer $r \ge 1$.
- Theorem (G., Kuhlmann, Reznick):
 1. For m ≥ 2, G_{2m+1} := L_{2m+1}(x₁²,...,x_{2m+1}²) ∈ Δ_{2m+1,8},
 2. For m ≥ 2, D_{2m} := L_{2m+1}(x₁²,...,x_{2m}², 0) ∈ Δ_{2m,8}.

- For $m \ge 2$, let $L_{2m+1} := m(m+1) \sum_{i < j} (x_i - x_j)^4 - \left(\sum_{i < j} (x_i - x_j)^2\right)^2$
- Let $M_r(x_1,\ldots,x_n) := x_1^r + \ldots + x_n^r$ for an integer $r \ge 1$.
- ► Theorem (G., Kuhlmann, Reznick): 1. For $m \ge 2$, $G_{2m+1} := L_{2m+1}(x_1^2, \dots, x_{2m+1}^2) \in \Delta_{2m+1,8}$, 2. For $m \ge 2$, $D_{2m} := L_{2m+1}(x_1^2, \dots, x_{2m}^2, 0) \in \Delta_{2m,8}$. 3. For $n \ge 4$, $T_n(x_1, \dots, x_n) := M_2(M_2^3 - 5M_2M_4 + 6M_6) \in \Delta_{n,8}$.

- For $m \ge 2$, let $L_{2m+1} := m(m+1) \sum_{i < j} (x_i - x_j)^4 - \left(\sum_{i < j} (x_i - x_j)^2\right)^2$
- Let $M_r(x_1,\ldots,x_n) := x_1^r + \ldots + x_n^r$ for an integer $r \ge 1$.
- ► Theorem (G., Kuhlmann, Reznick): 1. For $m \ge 2$, $G_{2m+1} := L_{2m+1}(x_1^2, \dots, x_{2m+1}^2) \in \Delta_{2m+1,8}$, 2. For $m \ge 2$, $D_{2m} := L_{2m+1}(x_1^2, \dots, x_{2m}^2, 0) \in \Delta_{2m,8}$. 3. For $n \ge 4$, $T_n(x_1, \dots, x_n) := M_2(M_2^3 - 5M_2M_4 + 6M_6) \in \Delta_{n,8}$. 4. For $n \ge 4$, $P_n(x_1, \dots, x_n) := (nM_4 - M_2^2)(M_2^3 - 5M_2M_4 + 6M_6) \in \Delta_{n,10}$.

- For $m \ge 2$, let $L_{2m+1} := m(m+1) \sum_{i < j} (x_i - x_j)^4 - \left(\sum_{i < j} (x_i - x_j)^2\right)^2$
- Let $M_r(x_1,\ldots,x_n) := x_1^r + \ldots + x_n^r$ for an integer $r \ge 1$.

► Theorem (G., Kuhlmann, Reznick):

 For $m \ge 2$, $G_{2m+1} := L_{2m+1}(x_1^2, \dots, x_{2m+1}^2) \in \Delta_{2m+1,8}$,
 For $m \ge 2$, $D_{2m} := L_{2m+1}(x_1^2, \dots, x_{2m}^2, 0) \in \Delta_{2m,8}$.
 For $n \ge 4$, $T_n(x_1, \dots, x_n) := M_2(M_2^3 - 5M_2M_4 + 6M_6) \in \Delta_{n,8}$.
 For $n \ge 4$, $P_n(x_1, \dots, x_n) := (nM_4 - M_2^2)(M_2^3 - 5M_2M_4 + 6M_6)$ $\in \Delta_{n,10}$.
 For $n \ge 3$, $R_n(x_1, \dots, x_n) := (M_2^3 - 3M_2M_4 + 2M_6)(M_2^3 - 5M_2M_4 + 6M_6)$ $\in \Delta_{n,12}$.

References

- M.D. Choi, T.Y. Lam, An old question of Hilbert, Proc. Conf. quadratic forms, Kingston 1976, Queen's Pap. Pure Appl. Math.46 (1977), 385-405.
- M.D. Choi, T.Y. Lam and B. Reznick, Even Symmetric Sextics, Math. Z. 195 (1987), 559-580.
- C. Goel, S. Kuhlmann, B. Reznick, On the Choi-Lam Analogue of Hilbert's 1888 theorem for symmetric forms, arXiv:1505.08145, 2015.
- C. Goel, S. Kuhlmann, B. Reznick, The Analogue of Hilbert's 1888 theorem for even symmetric forms, arXiv:1509.07482, 2015.
- W. R. Harris, Real Even Symmetric Ternary Forms, J. Algebra 222 (1999), no. 1, 204-245.
- D. Hilbert, Über die Darstellung definiter Formen als Summe von Formenquadraten, Math. Ann., 32 (1888), 342-350; Ges. Abh. 2, 154-161, Springer, Berlin, reprinted by Chelsea, New York, 1981.

Thank you for your attention!