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Hyperfields

A hyperfield is an object like a field, but where the addition is
allowed to be multivalued.
A hyperfield is a system (H,+, ·,−, 0, 1) where

I H is a set,

I + is a function from H × H to the set 2Hof all subsets of H,

I · is a binary operation on H,

I − : H → H is a function,

I 0, 1 are elements of H

such that

I. (H,+,−, 0) is a canonical hypergroup, i.e.,

(1) c ∈ a + b ⇒ a ∈ c + (−b),
(2) a ∈ b + 0 iff a = b,
(3) (a + b) + c = a + (b + c),
(4) a + b = b + a;



II. (H, ·, 1) is a commutative monoid, i.e.,

(1) (ab)c = a(bc),
(2) ab = ba,
(3) a1 = a;

III. a0 = 0 for all a ∈ H;

IV. a(b + c) ⊆ ab + ac;

V. 1 6= 0;

VI. every non-zero element has a multiplicative inverse.

I M. Krasner, Approximation des corps valués complets de caractéristique p 6= 0 par ceux de caractéristique
0, Colloque d’algèbre supérieure, tenu à Bruxelles du 19 au 22 décembre 1956 pp. 129–206, Centre Belge
de Recherches Mathématiques Établissements Ceuterick, Louvain; Librairie Gauthier-Villars, Paris (1957).

I M. Krasner, A class of hyperrings and hyperfields, Internat. J. Math. and Math. Sci. 6 (1983) 307–312.

I M. Marshall, Real reduced multirings and multifields, J. Pure and Appl. Alg. 205 (2006) 452–468.

I P. G ladki, Orderings of higher level in multifields and multirings, Ann. Math. Silesianae 24 (2010), 15-25.

I P. G ladki, M. Marshall, Orderings and signatures of higher level on multirings and hyperfields, J. K-Theory
10 (2012), 489-518.



Category of hyperfields

A morphism from H1 to H2, where H1, H2 are hyperfields, is a
function α : H1 → H2 which satisfies

(1) α(a + b) ⊆ α(a) + α(b),

(2) α(ab) = α(a)α(b),

(3) α(−a) = −α(a),

(4) α(0) = 0,

(5) α(1) = 1.



Examples of hyperfields

(A) Every field is a hyperfield (obviously);

(B) Q2 = {−1, 0, 1} with · defined in the usual way, and +
defined as follows:

I 0 is the neutral element of +,
I 1 + 1 = 1,
I (−1) + (−1) = (−1),
I 1 + (−1) = {−1, 0, 1};

this is a hyperfield.
Think of its elements as of negative, zero and positive reals,
and of the outcome of + as of adding reals with various signs.



(C) Every ordered abelian group is canonically identified with a
hyperfield.
If Γ := (Γ, ·, 1,≤) is an ordered abelian group, the associated
hyperfield is Γ ∪ {0} := (Γ ∪ {0},+, ·,−, 0, 1), where

I a + b :=


b if a < b

a if b < a

[0, a] if a = b

,

I a · 0 = 0 · a = 0,
I −a := a.

The convention here is that 0 < a for all a ∈ Γ.



(D) Let K be a field. Recall that a valuation on the field K is a
surjective map v : K → Γ ∪ {∞}, where Γ is an ordered
Abelian group, if

I v(a) =∞ if and only if a = 0;
I v(ab) = v(a) + v(b), for all a, b ∈ K∗;
I v(a + b) ≥ min{v(a), v(b)}, for all a, b ∈ K∗.

We introduce the usual notation:
I Av = {a ∈ K : v(a) ≥ 0} is the valuation ring of v ;
I Mv = {a ∈ K : v(a) > 0} is the unique maximal ideal of Av ;
I Uv = Av \Mv is the unit group of Av ;
I Kv = Av/Mv is the residue field of v .

Every valuation on a field K is just a hyperfield morphism
v : K → Γ ∪ {0}, for some ordered abelian group
Γ := (Γ, ·, 1,≤).



(E) If H is a hyperfield and T is a subgroup of H∗, we define the
quotient hyperfield H/mT = (H/mT ,+, ·,−, 0, 1):

I H/mT is the set of equivalence classes with respect to the
equivalence relation ∼ on H defined by

a ∼ b if and only if as = bt for some s, t ∈ T ,

I if a denotes the equivalence class of a, then

a ∈ b + c if and only if as ∈ bt + cu for somes, t, u ∈ T ,

I ab = ab, −a = −a, 0 = 0, 1 = 1.



(F) Let K be a field, K 6= F3,F5 and char(K ) 6= 2. We will write

(a1, . . . , an), for a1, . . . , an ∈ K ∗

to denote the quadratic form

f (X1, . . . ,Xn) = a1X 2
1 + . . .+ anX 2

n .

Moreover, denote by DK (a1, . . . , an) the value set of the form
(a1, . . . , an), i. e.

DK (a1, . . . , an) = {a1t2
1 + . . .+ ant2

n : t1, . . . , tn ∈ K ∗}.

Consider the quotient hyperfield K/mK ∗2. Then

a ∼ b iff. as = bt for some s, t ∈ K ∗2 iff. a = b mod K ∗2

and

a ∈ b+c iff. as ∈ bt+cu for some s, t, u ∈ K ∗2 iff. a ∈ DK (b, c).



Quadratic hyperfield

Proposition

Let H = (H,+, ·,−, 0, 1) be a hyperfield, let the prime addition
on H be defined as

a +′ b =


a + b if one of a, b is zero

a + b ∪ {a, b} if a 6= 0, b 6= 0, b 6= −a

H if a 6= 0, b 6= 0, b = −a

.

Then H ′ := (H,+′, ·,−, 0, 1) is also a hyperfield.



Definition
Let K be a field. The quadratic hyperfield of K is the quotient
hyperfield K/mK ∗2 endowed with the prime addition.

Remark

(1) Quadratic hyperfields are the same objects as quadratic form
schemes with zero adjoined.

I C. Cordes, Quadratic forms over non-formally real fields with a finite number of quaternion algebras,
Pacific J. Math. 63 (1976), 357-365.

I M. Kula, Fields with prescribed quadratic form schemes, Math. Zeit. 167 (1979), 201-212.

I M. Kula, L. Szczepanik, K. Szymiczek, Quadratic form schemes and quaternionic schemes, Fund. Math.
130 (1988), no. 3, 181-190.

(2) Quadratic form schemes with canellation property are the
same objects as quaternionic structures

I M. Marshall, Abstract Witt rings, Queen’s Papers in Pure and Applied Math, 57, Queen’s University,
Kingston, Ontario (1980).

I M. Marshall, J. Yucas Linked quaternionic mappings and their associated Witt rings, Pacific J. Math. 95
(1981), 411-425.

I A. Carson, M. Marshall, Decomposition of Witt rings, Canad. J. Math. 34 (1982), 1276-1302.



...or quaternionic schemes...
I A. Carson, M. Marshall, Decomposition of Witt rings, Canad. J. Math. 34 (1982), 1276-1302.

...or Abstract Witt rings...
I M. Marshall, Abstract Witt rings, Queen’s Papers in Pure and Applied Math, 57, Queen’s University,

Kingston, Ontario (1980).

I M. Marshall, J. Yucas Linked quaternionic mappings and their associated Witt rings, Pacific J. Math. 95
(1981), 411-425.

I A. Carson, M. Marshall, Decomposition of Witt rings, Canad. J. Math. 34 (1982), 1276-1302.

...or special groups
I M. Dickmann, F. Miraglia, Special Groups : Boolean-Theoretic Methods in the Theory of Quadratic

Forms, Memoirs Amer. Math. Soc., 689, Amer. Math. Soc., Providence, RI (2000).

(3) Real reduced hyperfields are the same objects as spaces of
orderings

I M. Marshall, Classification of finite spaces of orderings, Canad. J. Math. 31 (1979), 320-330.

I M. Marshall, Quotients and inverse limits of spaces of orderings, Canad. J. Math. 31 (1979), 604-616.

I M. Marshall, The Witt ring of a space of orderings, Trans. Amer. Math. Soc. 258 (1980), 505-521.

I M. Marshall, Spaces of orderings IV, Canad. J. Math. 32 (1980), 603-627.

I M. Marshall, Spaces of orderings: systems of quadratic forms, local structures and saturation, Comm. in
Alg. 12 (1984), 723-743.

...or real reduced special groups
I M. Dickmann, F. Miraglia, Special Groups : Boolean-Theoretic Methods in the Theory of Quadratic

Forms, Memoirs Amer. Math. Soc., 689, Amer. Math. Soc., Providence, RI (2000).



Witt equivalence
Denote by W (K ) the Witt ring of non-degenerate symmetric
bilinear forms over the field K .

For K with char K 6= 2 this is the same as Witt ring of quadratic
forms.

Two fields K1 and K2 are Witt equivalent if W (K1) ∼= W (K2).

A hyperfield isomorphism α : Q(K1)→ Q(K2) can be viewed as a
group isomorphism α : K ∗1 /K ∗21 → K ∗2 /K ∗22 such that α(−1) = −1
and

α(DK1(a, b)) = DK2(α(a), α(b)) for all a, b ∈ K ∗1 /K ∗21 .

Proposition

W (K1) ∼= W (K2) as rings if and only if Q(K1) ∼= Q(K2) as
hyperfields.

I D.K. Harrison, Witt rings, University of Kentucky Notes, Lexington, Kentucky (1970).
I J.K. Arason, A. Pfister, Beweis des Krullschen Durchschnittsatzes für den Wittring, Invent. Math. 12

(1971), 173-176.
I R. Baeza, R. Moresi, On the Witt-equivalence of fields of characteristic 2, J. Algebra 92 (1985), 446-453.

We shall denote by K1 ∼ K2 two fields that are Witt equivalent.



Local fields

Local fields are complete discrete valued fields with finite residue
field.

Remark

(1) Local fields of characteristic 0 are finite extensions of Qp (the
p-adic competion of Q).

(2) Local fields of characteristic p are fields of the form Fpk ((t)).



Theorem
Let (F , v) be a nondyadic local field. Then

F ∼

{
Q3 if |Fv | ≡ 3 mod 4

Q5 if |Fv | ≡ 1 mod 4.

Theorem
Let (F , v) be a dyadic local field, and hence a finite extension of
Q2, say [F : Q2] = n. Then

(1) if n is odd, then the Witt equivalence class of F depends only
on n;

(2) if n is even, then there are exactly 2 Witt equivalence classes:
I one with

√
−1 ∈ F , and

I one with
√
−1 /∈ F .

I T.-Y. Lam, Introduction to quadratic forms over fields, Graduate Studies in Mathematics 67 American
Mathematical Society, Providence, RI (2005).



Global fields

Global fields are number fields or function fields in one variable
over a finite field.

By finite primes of a global field we understand the discrete rank
one valuations. These are the only primes in the function field case.

By infinite primes of a number field we understand embeddings
into R or conjugate pairs of embeddings into C.

Theorem
Let K1, K2 be global fields of characteristic 6= 2. Then K1 ∼ K2 if
and only if there exists a one-to-one correspondence between
primes of K1 and primes of K2 (both finite and infinite) such that
if p 7→ q then K̃1p ∼ K̃2q, where K̃1p (K̃2q) denotes the completion
of K1 (K2) at p (q, respectively).

I R. Perlis, K. Szymiczek, P.E. Conner, R. Litherland, Matching Witts with global fields, Contemp. Math.
155 (1994) 365-378.



Function fields

Theorem
Let K1, K2 be function fields in one variable of characteristic 6= 2
over algebraically closed fields k1 and k2, respectively. Then
K1 ∼ K2 if and only if |k1| = |k2|.

Theorem
Let K be an algebraic function field in one variable over a real
closed field k. Then

K ∼


k(t) if K is formally real

k(t)(
√
−1) if K is nonreal and

√
−1 ∈ K

k(t)(
√
−(t2 + 1)) if K is nonreal and

√
−1 /∈ K .

I P. Koprowski, Witt equivalence of algebraic function fields over real closed fields, Math. Z. 242 (2002)
323-345.

I N. Grenier-Boley, D.W. Hoffmann, Isomorphism criteria for Witt rings of real fields. With appendix by
Claus Scheiderer, Forum Math. 25 (2013) 1-18.



How about function fields over algebraic curves over other fields...?

The easiest example are function fields of rational conics.

These are of the following forms:

Qa,b := qf
Q[x , y ]

(ax2 + by 2 − 1)
or Qr := qf

Q[x , y ]

(x2 − r)
.

where a, b ∈ Q∗ and r ∈ Q∗\Q∗2.

Using some elementary methods we were able to isolate 11 Witt
non-equivalent examples of such fields.

This leads to the following natural questions:

Conjecture 1: There are 11 Witt non-equivalent function fields of
rational conics.

Conjecture 2: There are infinitely many Witt non-equivalent
function fields of rational conics.



Matching valuations
The main tools used in building a Witt equivalence between fields
K and L rely on recognizing which valuations of K correspond to
which valuations of L.

The idea here is to map some cannonical subgroups of K ∗, call
them T , associated to a given valuation of the field K to some
subgroups of L∗, and build new valuations from there.

We say x ∈ K ∗ is T -rigid if

T + Tx ⊆ T ∪ Tx .

B(T ) := {x ∈ K ∗ : either x or − x is not T -rigid}.

Theorem
Let H ⊆ K ∗ be a subgroup containing B(T ). Then there exists a
subgroup Ĥ of K ∗ such that H ⊆ Ĥ and (Ĥ : H) ≤ 2 and a
valuation v of K such that 1 + Mv ⊆ T and Uv ⊆ Ĥ.

I J.K. Arason, R. Elman, W. Jacob, Rigid elements, valuations, and realization of Witt rings, J. Algebra 110
(1987) 449-467.



Abhyankar valuations

Let K be an algebraic function field over k .

Let v be a valuation on K .

The Abhyankar inequality asserts that

trdeg(K : k) ≥ rkQ(Γv/Γv |k ) + trdeg(Kv : kv |k ),

For any abelian group Γ, rkQ(Γ) := dimQ(Γ⊗Z Q).

The valuation v is Abhyankar (relative to k) if

trdeg(K : k) = rkQ(Γv/Γv |k ) + trdeg(Kv : kv |k ).

In this case Γv/Γv |k ∼= Z× · · · × Z with rkQ(Γv/Γv |k ) factors, and
Kv is a function field over kv |k .

I F.-V. Kuhlmann, On places of algebraic function fields in arbitrary characteristic, Advances in Math. 188
(2004) 399-424.



Define the nominal transcendence degree of K to be

ntd(K ) :=

{
trdeg(K : Q) if char(K ) = 0

trdeg(K : Fp)− 1 if char(K ) = p 6= 0
.

If K is an algebraic function field over a global field k , then
ntd(K ) = trdeg(K : k).

Moreover, if v is Abhyankar (relative to k) then

Γv
∼= Z× · · · × Z

with rkQ(Γv ) factors, and Kv is either a function field over a global
field (if ntd(Kv ) ≥ 0) or a finite field (if ntd(Kv ) = −1).



Witt equivalence of function fields over global fields

With these methods we can actually do better than just function
fields of conics over Q!

Theorem
Let K , L be function fields over global fields, α : Q(K )→ Q(L) a
hyperfield isomorphism. Then

(1) ntd(K ) = ntd(L).

(2) There is a canonical bijection v ↔ w between Abhyankar
valuations v of K with ntd(Kv ) ≥ 0 and Abhyankar valuations
w of L with ntd(Lw ) ≥ 0 such that α maps (1 + Mv )K ∗2/K ∗2

onto (1 + Mw )L∗2/L∗2 and Uv K ∗2/K ∗2 onto Uw L∗2/L∗2.

(3) If v ↔ w and v ′ ↔ w ′ then v ′ is coarser than v iff w ′ is
coarser than w.



(4) If v ↔ w , v ,w non-trivial, then α induces a hyperfield
isomorphism K/m(1 + Mv )K ∗2 → L/m(1 + Mw )L∗2, a
hyperfield isomorphism Q(Kv )→ Q(Lw ), and a group
isomorphism Γv/2Γv → Γw/2Γw such that the diagrams

Q(K ) //

��

Q(L)

��
K/m(1 + Mv )K ∗2 // L/m(1 + Mw )L∗2

Q(Kv )

OO

// Q(Kw )

OO

and
Q(K )∗ //

��

Q(L)∗

��
Γv/2Γv

// Γw/2Γw

commute.



Corollaries to the main theorem
Let k be a number field and let r1, respectively r2 be the number
of real embeddings of k, respectively the number of conjugate
pairs of complex embeddings of k.

Thus [k : Q] = r1 + 2r2.

Let

Vk := {r ∈ k∗ : (r) = a2 for some fractional ideal a of k}.

Clearly Vk is a subgroup of k∗ and k∗2 ⊆ Vk .

Corollary

Suppose K = k(x), L = `(x) where k , ` are number fields, and
α : Q(K )→ Q(L) is a hyperfield isomorphism. Then

(1) a ∈ k∗/k∗2 iff α(a) ∈ `∗/`∗2.

(2) The map a 7→ α(a) defines a hyperfield isomorphism between
Q(k) and Q(`).

(3) α maps Vk/k∗2 to V`/`
∗2.

(4) The 2-ranks of the ideal class groups of k and ` are equal.



Let d be a square free integer.

The discriminant of Q(
√

d) is d if d ≡ 1 mod 4 and 4d otherwise.

The 2-rank of the class number of Q(
√

d) is one less than the
number of prime divisors of the discriminant of Q(

√
d).

In particular, there are infinitely many possible values for the 2-rank
of the class number for fields of the sort Q(

√
d), d ∈ Q∗\Q∗2.

Combining this with the previous Corollary, we obtain the following:

Corollary

There are infinitely many Witt inequivalent fields of the sort Qr ,
r ∈ Q∗\Q∗2.


