Witt equivalence of function fields over global fields

Paweł Gładki (joint work with Murray Marshall)

Uniwersytet Śląski http://www.math.us.edu.pl/~pgladki/

October 14, 2015

Hyperfields

A hyperfield is an object like a field, but where the addition is allowed to be multivalued.

A hyperfield is a system $(H, +, \cdot, -, 0, 1)$ where

- H is a set,
- + is a function from $H \times H$ to the set 2^H of all subsets of H,
- \cdot is a binary operation on H,
- $-: H \rightarrow H$ is a function,
- 0,1 are elements of H

such that

I.
$$(H, +, -, 0)$$
 is a canonical hypergroup, i.e.,
(1) $c \in a + b \Rightarrow a \in c + (-b)$,
(2) $a \in b + 0$ iff $a = b$,
(3) $(a + b) + c = a + (b + c)$,
(4) $a + b = b + a$;

II. $(H, \cdot, 1)$ is a commutative monoid, i.e., (1) (ab)c = a(bc), (2) ab = ba, (3) a1 = a; III. a0 = 0 for all $a \in H$; IV. $a(b + c) \subseteq ab + ac$; V. $1 \neq 0$;

VI. every non-zero element has a multiplicative inverse.

- M. Krasner, Approximation des corps valués complets de caractéristique p = 0 par ceux de caractéristique 0, Colloque d'algèbre supérieure, tenu à Bruxelles du 19 au 22 décembre 1956 pp. 129–206, Centre Belge de Recherches Mathématiques Établissements Ceuterick, Louvain; Librairie Gauthier-Villars, Paris (1957).
- M. Krasner, A class of hyperrings and hyperfields, Internat. J. Math. and Math. Sci. 6 (1983) 307–312.
- M. Marshall, Real reduced multirings and multifields, J. Pure and Appl. Alg. 205 (2006) 452–468.
- P. Gładki, Orderings of higher level in multifields and multirings, Ann. Math. Silesianae 24 (2010), 15-25.
- P. Gładki, M. Marshall, Orderings and signatures of higher level on multirings and hyperfields, J. K-Theory 10 (2012), 489-518.

Category of hyperfields

A **morphism** from H_1 to H_2 , where H_1 , H_2 are hyperfields, is a function $\alpha : H_1 \to H_2$ which satisfies

(1)
$$\alpha(a+b) \subseteq \alpha(a) + \alpha(b)$$
,
(2) $\alpha(ab) = \alpha(a)\alpha(b)$,
(3) $\alpha(-a) = -\alpha(a)$,
(4) $\alpha(0) = 0$,
(5) $\alpha(1) = 1$.

Examples of hyperfields

(A) Every field is a hyperfield (obviously);

(B) $Q_2 = \{-1, 0, 1\}$ with \cdot defined in the usual way, and + defined as follows:

• 0 is the neutral element of +,

•
$$(-1) + (-1) = (-1)$$
,

•
$$1 + (-1) = \{-1, 0, 1\};$$

this is a hyperfield.

Think of its elements as of **negative**, **zero** and **positive** reals, and of the outcome of + as of adding reals with various signs.

(C) Every ordered abelian group is canonically identified with a hyperfield. If $\Gamma := (\Gamma, \cdot, 1, \leq)$ is an ordered abelian group, the associated hyperfield is $\Gamma \cup \{0\} := (\Gamma \cup \{0\}, +, \cdot, -, 0, 1)$, where $a + b := \begin{cases} b \text{ if } a < b \\ a \text{ if } b < a \\ [0, a] \text{ if } a = b \end{cases}$ $a \cdot 0 = 0 \cdot a = 0$, -a := a.

The convention here is that 0 < a for all $a \in \Gamma$.

(D) Let K be a field. Recall that a valuation on the field K is a surjective map v : K → Γ ∪ {∞}, where Γ is an ordered Abelian group, if

•
$$v(a) = \infty$$
 if and only if $a = 0$;

•
$$v(ab) = v(a) + v(b)$$
, for all $a, b \in K^*$;

• $v(a+b) \ge \min\{v(a), v(b)\}$, for all $a, b \in K^*$.

We introduce the usual notation:

- $A_v = \{a \in K : v(a) \ge 0\}$ is the valuation ring of v;
- $M_v = \{a \in K : v(a) > 0\}$ is the unique maximal ideal of A_v ;

•
$$U_{\nu} = A_{\nu} \setminus M_{\nu}$$
 is the unit group of A_{ν} ;

•
$$K_v = A_v / M_v$$
 is the residue field of v.

Every valuation on a field K is just a hyperfield morphism $v : K \to \Gamma \cup \{0\}$, for some ordered abelian group $\Gamma := (\Gamma, \cdot, 1, \leq)$.

- (E) If H is a hyperfield and T is a subgroup of H^* , we define the **quotient hyperfield** $H/_mT = (H/_mT, +, \cdot, -, 0, 1)$:
 - ► H/_mT is the set of equivalence classes with respect to the equivalence relation ~ on H defined by

 $a \sim b$ if and only if as = bt for some $s, t \in T$,

• if \overline{a} denotes the equivalence class of a, then

 $\overline{a} \in \overline{b} + \overline{c}$ if and only if $as \in bt + cu$ for somes, $t, u \in T$,

 $\bullet \ \overline{a}\overline{b} = \overline{ab}, \ -\overline{a} = \overline{-a}, \ 0 = \overline{0}, \ 1 = \overline{1}.$

(F) Let K be a field, $K \neq \mathbb{F}_3, \mathbb{F}_5$ and char $(K) \neq 2$. We will write (a_1, \ldots, a_n) , for $a_1, \ldots, a_n \in K^*$

to denote the quadratic form

$$f(X_1,\ldots,X_n)=a_1X_1^2+\ldots+a_nX_n^2.$$

Moreover, denote by $D_{\mathcal{K}}(a_1,\ldots,a_n)$ the value set of the form (a_1,\ldots,a_n) , i. e.

$$D_{\mathcal{K}}(a_1,\ldots,a_n)=\{a_1t_1^2+\ldots+a_nt_n^2:t_1,\ldots,t_n\in\mathcal{K}^*\}.$$

Consider the quotient hyperfield $K/_m K^{*2}$. Then

$$a\sim b$$
 iff. $as=bt$ for some $s,t\in K^{st 2}$ iff. $a=b\mod K^{st 2}$

and

$$\overline{a} \in \overline{b} + \overline{c}$$
 iff. $as \in bt + cu$ for some $s, t, u \in K^{*2}$ iff. $a \in D_K(b, c)$

Quadratic hyperfield

Proposition

Let $H = (H, +, \cdot, -, 0, 1)$ be a hyperfield, let the prime addition on H be defined as

$$a + b = \begin{cases} a + b & \text{if one of } a, b \text{ is zero} \\ a + b \cup \{a, b\} & \text{if } a \neq 0, \ b \neq 0, \ b \neq -a \\ H & \text{if } a \neq 0, \ b \neq 0, \ b = -a \end{cases}$$

Then $H' := (H, +', \cdot, -, 0, 1)$ is also a hyperfield.

Definition

Let K be a field. The **quadratic hyperfield** of K is the quotient hyperfield $K/_m K^{*2}$ endowed with the prime addition.

Remark

- (1) Quadratic hyperfields are the same objects as quadratic form schemes with zero adjoined.
 - C. Cordes, Quadratic forms over non-formally real fields with a finite number of quaternion algebras, Pacific J. Math. 63 (1976), 357-365.
 - M. Kula, Fields with prescribed quadratic form schemes, Math. Zeit. 167 (1979), 201-212.
 - M. Kula, L. Szczepanik, K. Szymiczek, Quadratic form schemes and quaternionic schemes, Fund. Math. 130 (1988), no. 3, 181-190.
- (2) Quadratic form schemes with canellation property are the same objects as quaternionic structures
 - M. Marshall, Abstract Witt rings, Queen's Papers in Pure and Applied Math, 57, Queen's University, Kingston, Ontario (1980).
 - M. Marshall, J. Yucas Linked quaternionic mappings and their associated Witt rings, Pacific J. Math. 95 (1981), 411-425.
 - A. Carson, M. Marshall, Decomposition of Witt rings, Canad. J. Math. 34 (1982), 1276-1302.

... or quaternionic schemes...

A. Carson, M. Marshall, Decomposition of Witt rings, Canad. J. Math. 34 (1982), 1276-1302.

... or Abstract Witt rings...

- M. Marshall, Abstract Witt rings, Queen's Papers in Pure and Applied Math, 57, Queen's University, Kingston, Ontario (1980).
- M. Marshall, J. Yucas Linked quaternionic mappings and their associated Witt rings, Pacific J. Math. 95 (1981), 411-425.
- A. Carson, M. Marshall, Decomposition of Witt rings, Canad. J. Math. 34 (1982), 1276-1302.

...or special groups

M. Dickmann, F. Miraglia, Special Groups : Boolean-Theoretic Methods in the Theory of Quadratic Forms, Memoirs Amer. Math. Soc., 689, Amer. Math. Soc., Providence, RI (2000).

(3) Real reduced hyperfields are the same objects as spaces of orderings

- M. Marshall, Classification of finite spaces of orderings, Canad. J. Math. 31 (1979), 320-330.
- M. Marshall, Quotients and inverse limits of spaces of orderings, Canad. J. Math. 31 (1979), 604-616.
- M. Marshall, The Witt ring of a space of orderings, Trans. Amer. Math. Soc. 258 (1980), 505-521.
- M. Marshall, Spaces of orderings IV, Canad. J. Math. 32 (1980), 603-627.
- M. Marshall, Spaces of orderings: systems of quadratic forms, local structures and saturation, Comm. in Alg. 12 (1984), 723-743.

... or real reduced special groups

M. Dickmann, F. Miraglia, Special Groups : Boolean-Theoretic Methods in the Theory of Quadratic Forms, Memoirs Amer. Math. Soc., 689, Amer. Math. Soc., Providence, RI (2000).

Witt equivalence

Denote by W(K) the Witt ring of non-degenerate symmetric bilinear forms over the field K.

For K with char $K \neq 2$ this is the same as Witt ring of quadratic forms.

Two fields K_1 and K_2 are **Witt equivalent** if $W(K_1) \cong W(K_2)$. A hyperfield isomorphism $\alpha : Q(K_1) \to Q(K_2)$ can be viewed as a group isomorphism $\alpha : K_1^*/K_1^{*2} \to K_2^*/K_2^{*2}$ such that $\alpha(-\overline{1}) = -\overline{1}$ and

$$\alpha(D_{\mathcal{K}_1}(\overline{a},\overline{b})) = D_{\mathcal{K}_2}(\alpha(\overline{a}),\alpha(\overline{b})) \text{ for all } \overline{a},\overline{b} \in \mathcal{K}_1^*/\mathcal{K}_1^{*2}.$$

Proposition

 $W(K_1) \cong W(K_2)$ as rings if and only if $Q(K_1) \cong Q(K_2)$ as hyperfields.

- D.K. Harrison, Witt rings, University of Kentucky Notes, Lexington, Kentucky (1970).
- J.K. Arason, A. Pfister, Beweis des Krullschen Durchschnittsatzes f
 ür den Wittring, Invent. Math. 12 (1971), 173-176.
- R. Baeza, R. Moresi, On the Witt-equivalence of fields of characteristic 2, J. Algebra 92 (1985), 446-453.

We shall denote by $K_1 \sim K_2$ two fields that are Witt equivalent.

Local fields

Local fields are complete discrete valued fields with finite residue field.

Remark

- Local fields of characteristic 0 are finite extensions of Q_p (the p-adic competion of Q).
- (2) Local fields of characteristic p are fields of the form $\mathbb{F}_{p^k}((t))$.

Theorem Let (F, v) be a nondyadic local field. Then

$$F \sim egin{cases} \mathbb{Q}_3 & \textit{if} \ |F_v| \equiv 3 \mod 4 \ \mathbb{Q}_5 & \textit{if} \ |F_v| \equiv 1 \mod 4. \end{cases}$$

Theorem

Let (F, v) be a dyadic local field, and hence a finite extension of \mathbb{Q}_2 , say $[F : \mathbb{Q}_2] = n$. Then

- (1) if n is odd, then the Witt equivalence class of F depends only on n;
- (2) if n is even, then there are exactly 2 Witt equivalence classes:
 - one with $\sqrt{-1} \in F$, and
 - one with $\sqrt{-1} \notin F$.

T.-Y. Lam, Introduction to quadratic forms over fields, Graduate Studies in Mathematics 67 American Mathematical Society, Providence, RI (2005).

Global fields

Global fields are number fields or function fields in one variable over a finite field.

By **finite primes** of a global field we understand the discrete rank one valuations. These are the only primes in the function field case.

By **infinite primes** of a number field we understand embeddings into \mathbb{R} or conjugate pairs of embeddings into \mathbb{C} .

Theorem

Let K_1 , K_2 be global fields of characteristic $\neq 2$. Then $K_1 \sim K_2$ if and only if there exists a one-to-one correspondence between primes of K_1 and primes of K_2 (both finite and infinite) such that if $\mathfrak{p} \mapsto \mathfrak{q}$ then $\tilde{K}_{1\mathfrak{p}} \sim \tilde{K}_{2\mathfrak{q}}$, where $\tilde{K}_{1\mathfrak{p}}$ ($\tilde{K}_{2\mathfrak{q}}$) denotes the completion of K_1 (K_2) at \mathfrak{p} (\mathfrak{q} , respectively).

R. Perlis, K. Szymiczek, P.E. Conner, R. Litherland, Matching Witts with global fields, Contemp. Math. 155 (1994) 365-378.

Function fields

Theorem

Let K_1 , K_2 be function fields in one variable of characteristic $\neq 2$ over algebraically closed fields k_1 and k_2 , respectively. Then $K_1 \sim K_2$ if and only if $|k_1| = |k_2|$.

Theorem

Let K be an algebraic function field in one variable over a real closed field k. Then

$$K \sim egin{cases} k(t) & ext{if } K ext{ is formally real} \ k(t)(\sqrt{-1}) & ext{if } K ext{ is nonreal and } \sqrt{-1} \in K \ k(t)(\sqrt{-(t^2+1)}) & ext{if } K ext{ is nonreal and } \sqrt{-1} \notin K. \end{cases}$$

P. Koprowski, Witt equivalence of algebraic function fields over real closed fields, Math. Z. 242 (2002) 323-345.

N. Grenier-Boley, D.W. Hoffmann, Isomorphism criteria for Witt rings of real fields. With appendix by Claus Scheiderer, Forum Math. 25 (2013) 1-18. How about function fields over algebraic curves over other fields...? The easiest example are function fields of rational conics. These are of the following forms:

$$\mathbb{Q}_{a,b} := \operatorname{qf} rac{\mathbb{Q}[x,y]}{(ax^2 + by^2 - 1)} ext{ or } \mathbb{Q}_r := \operatorname{qf} rac{\mathbb{Q}[x,y]}{(x^2 - r)}.$$

where $a, b \in \mathbb{Q}^*$ and $r \in \mathbb{Q}^* \setminus \mathbb{Q}^{*2}$.

Using some elementary methods we were able to isolate 11 Witt non-equivalent examples of such fields.

This leads to the following natural questions:

Conjecture 1: There are 11 Witt non-equivalent function fields of rational conics.

Conjecture 2: There are infinitely many Witt non-equivalent function fields of rational conics.

Matching valuations

The main tools used in building a Witt equivalence between fields K and L rely on recognizing which valuations of K correspond to which valuations of L.

The idea here is to map some cannonical subgroups of K^* , call them T, associated to a given valuation of the field K to some subgroups of L^* , and build new valuations from there.

We say $x \in K^*$ is *T*-rigid if

$$T+Tx\subseteq T\cup Tx.$$

 $B(T) := \{x \in K^* : \text{ either } x \text{ or } -x \text{ is not } T\text{-rigid}\}.$

Theorem

Let $H \subseteq K^*$ be a subgroup containing B(T). Then there exists a subgroup \hat{H} of K^* such that $H \subseteq \hat{H}$ and $(\hat{H} : H) \leq 2$ and a valuation v of K such that $1 + M_v \subseteq T$ and $U_v \subseteq \hat{H}$.

J.K. Arason, R. Elman, W. Jacob, Rigid elements, valuations, and realization of Witt rings, J. Algebra 110 (1987) 449-467.

Abhyankar valuations

Let K be an algebraic function field over k. Let v be a valuation on K.

The Abhyankar inequality asserts that

 $\operatorname{trdeg}(K:k) \geq \operatorname{rk}_{\mathbb{Q}}(\Gamma_{v}/\Gamma_{v|k}) + \operatorname{trdeg}(K_{v}:k_{v|k}),$

For any abelian group Γ , $rk_{\mathbb{Q}}(\Gamma) := \dim_{\mathbb{Q}}(\Gamma \otimes_{\mathbb{Z}} \mathbb{Q})$. The valuation v is **Abhyankar** (relative to k) if

$$\operatorname{trdeg}(K:k) = \operatorname{rk}_{\mathbb{Q}}(\Gamma_{v}/\Gamma_{v|k}) + \operatorname{trdeg}(K_{v}:k_{v|k}).$$

In this case $\Gamma_{\nu}/\Gamma_{\nu|k} \cong \mathbb{Z} \times \cdots \times \mathbb{Z}$ with $\mathrm{rk}_{\mathbb{Q}}(\Gamma_{\nu}/\Gamma_{\nu|k})$ factors, and K_{ν} is a function field over $k_{\nu|k}$.

F.-V. Kuhlmann, On places of algebraic function fields in arbitrary characteristic, Advances in Math. 188 (2004) 399-424. Define the **nominal transcendence degree** of K to be

$$\mathsf{ntd}(K) := egin{cases} \mathsf{trdeg}(K:\mathbb{Q}) & ext{if } \mathsf{char}(K) = 0 \\ \mathsf{trdeg}(K:\mathbb{F}_p) - 1 & ext{if } \mathsf{char}(K) = p
eq 0 \end{cases}$$

If K is an algebraic function field over a global field k, then ntd(K) = trdeg(K : k).

Moreover, if v is Abhyankar (relative to k) then

$$\Gamma_{v} \cong \mathbb{Z} \times \cdots \times \mathbb{Z}$$

with $\operatorname{rk}_{\mathbb{Q}}(\Gamma_{\nu})$ factors, and K_{ν} is either a function field over a global field (if $\operatorname{ntd}(K_{\nu}) \geq 0$) or a finite field (if $\operatorname{ntd}(K_{\nu}) = -1$).

Witt equivalence of function fields over global fields

With these methods we can actually do better than just function fields of conics over $\mathbb{Q}!$

Theorem

Let K, L be function fields over global fields, $\alpha : Q(K) \rightarrow Q(L)$ a hyperfield isomorphism. Then

- (1) $\operatorname{ntd}(K) = \operatorname{ntd}(L)$.
- (2) There is a canonical bijection $v \leftrightarrow w$ between Abhyankar valuations v of K with $ntd(K_v) \geq 0$ and Abhyankar valuations w of L with $ntd(L_w) \geq 0$ such that α maps $(1 + M_v)K^{*2}/K^{*2}$ onto $(1 + M_w)L^{*2}/L^{*2}$ and U_vK^{*2}/K^{*2} onto U_wL^{*2}/L^{*2} .
- (3) If $v \leftrightarrow w$ and $v' \leftrightarrow w'$ then v' is coarser than v iff w' is coarser than w.

(4) If $v \leftrightarrow w$, v, w non-trivial, then α induces a hyperfield isomorphism $K/_m(1 + M_v)K^{*2} \rightarrow L/_m(1 + M_w)L^{*2}$, a hyperfield isomorphism $Q(K_v) \rightarrow Q(L_w)$, and a group isomorphism $\Gamma_v/2\Gamma_v \rightarrow \Gamma_w/2\Gamma_w$ such that the diagrams

and

commute.

Corollaries to the main theorem

Let k be a number field and let r_1 , respectively r_2 be the number of real embeddings of k, respectively the number of conjugate pairs of complex embeddings of k.

Thus
$$[k:\mathbb{Q}] = r_1 + 2r_2$$
.

Let

 $V_k := \{r \in k^* : (r) = \mathfrak{a}^2 \text{ for some fractional ideal } \mathfrak{a} \text{ of } k\}.$

Clearly V_k is a subgroup of k^* and $k^{*2} \subseteq V_k$.

Corollary

Suppose K = k(x), $L = \ell(x)$ where k, ℓ are number fields, and $\alpha : Q(K) \to Q(L)$ is a hyperfield isomorphism. Then (1) $a \in k^*/k^{*2}$ iff $\alpha(a) \in \ell^*/\ell^{*2}$.

- (2) The map a → α(a) defines a hyperfield isomorphism between Q(k) and Q(ℓ).
- (3) α maps V_k/k^{*2} to V_ℓ/ℓ^{*2} .
- (4) The 2-ranks of the ideal class groups of k and ℓ are equal.

Let d be a square free integer.

The discriminant of $\mathbb{Q}(\sqrt{d})$ is d if $d \equiv 1 \mod 4$ and 4d otherwise. The 2-rank of the class number of $\mathbb{Q}(\sqrt{d})$ is one less than the number of prime divisors of the discriminant of $\mathbb{Q}(\sqrt{d})$.

In particular, there are infinitely many possible values for the 2-rank of the class number for fields of the sort $\mathbb{Q}(\sqrt{d})$, $d \in \mathbb{Q}^* \setminus \mathbb{Q}^{*2}$. Combining this with the previous Corollary, we obtain the following:

Corollary

There are infinitely many Witt inequivalent fields of the sort \mathbb{Q}_r , $r \in \mathbb{Q}^* \setminus \mathbb{Q}^{*2}$.