Stellensätze in closed ordered differential fields

QUENTIN BROUETTE

University of Mons

October 2015

Quentin Brouette (University of Mons)

Stellensätze in differential fields

October 2015 1 / 12

We want to prove analogues for differential fields of

- Dubois-Krivine-Risler Nullstellensatz,
- Stengle's Positivstellensatz,
- Schmüdgen's theorem for the real field.

Differential fields and ordered fields

Let K be a differential field.

 $K\{X_1,\ldots,X_n\}$ the differential ring of differential polynomials with *n* variables, $K\{X_1,\ldots,X_n\}$:=

$$K[X_1,...,X_n,D(X_1),...,D(X_n),D^2(X_1),...,D^2(X_n),...].$$

If $p \in K\{\bar{X}\}$, $\operatorname{ord}(p) = \min \{k \in \mathbb{N} : p \in K[\bar{X}, D(\bar{X}), \dots, D^k(\bar{X})]\}$. An ideal $I \subseteq K\{\bar{X}\}$ is differential iff

$$p \in I \Rightarrow D(p) \in I.$$

Definition

An ordered differential field is an ordered field with a derivation. ODF denotes their first order theory in the language $\{+, -, \cdot, ^{-1}, 0, 1, <, D\}$.

Fact 1 (in ordered fields)

Let K be real closed and L an ordered field extension of K (not assumed to be real closed). For any $g_i \in K[\bar{X}]$ and $\Box_i \in \{=, \neq, >, \geq, <, \leq\}$, if $L \models \exists \bar{X} \bigwedge_{i=1}^k g_i(\bar{X}) \Box_i 0$ then $K \models \exists \bar{X} \bigwedge_{i=1}^k g_i(\bar{X}) \Box_i 0$.

We need a differential analogue in some theory T extending ODF.

Fact 2 (in ordered differential fields)

Let K be a model of T and L an ordered differential field extension of K (not assumed to be a model of T). For any $g_i \in K\{\bar{X}\}$ and $\Box_i \in \{=, \neq, >, \geq, <, \leq\}$, if $L \models \exists \bar{X} \bigwedge_{i=1}^k g_i(\bar{X}) \Box_i 0$ then $K \models \exists \bar{X} \bigwedge_{i=1}^k g_i(\bar{X}) \Box_i 0$.

T the model completion of ODF.

イロト 不得下 イヨト イヨト

Singer showed that the theory ODF has a model completion, called CODF.

 $f(\bar{X}) = f^*(\bar{X}, D(\bar{X}), \dots, D^n(\bar{X}))$, where f^* is an ordinary polynomial.

Theorem 1 (Singer's axiomatisation of CODF)

Let K be an ordered differential field, $K \models CODF$ iff

K is a real closed field;

If or any f, g₁,..., g_m ∈ K{X}, such that for all i ∈ {1,...m},
n = ord(f) ≥ ord(g_i). If there exist a₀,..., a_n such that
f^{*}(a₀,..., a_n) = 0, $\frac{\partial}{\partial X_n} f^*(a_0,...,a_n) \neq 0$ and
g^{*}₁(a₀,..., a_n) > 0,..., g^{*}_m(a₀,..., a_n) > 0, then there is z ∈ K such
that f(z) = 0 and g₁(z) > 0,..., g_m(z) > 0.

- 本間 と えき と えき とうき

Definition

Let R be a ring and I an ideal of R, the real radical of I is

 $\mathcal{R}(I) := \{ f \in R : f^{2m} + s \in I \text{ for some } m \in \mathbb{N} \text{ and } s \in \sum R^2 \}.$

Theorem 2 (Dubois-Krivine-Risler nullstellensatz)

Let $F \models RCF$ and I be an ideal of $F[X_1, \ldots, X_n]$, then $\mathcal{I}(\mathcal{V}(I)) = \mathcal{R}(I)$.

Theorem 3 (Nullstellensatz for CODF)

Let $K \models CODF$ and I be a differential ideal of $K\{X_1, \ldots, X_n\}$, then $\mathcal{I}(\mathcal{V}(I)) = \mathcal{R}(I)$.

Proof using:

- Model completeness of CODF
- Ritt-Raudenbush Theorem: any radical differential ideal of $K\{X_1, \ldots, X_n\}$ is finitely generated.

Quentin Brouette (University of Mons)

E 990

Proposition 4 (Grill)

Let T be a proper cone of $K{\{\bar{X}\}}$. The following are equivalent

• There is a T-convex proper differential ideal in $K{\{\bar{X}\}}$.

2 T is contained in a proper differential cone of $K{\{\bar{X}\}}$.

Theorem 5 (Stengle)

Any proper differential cone is contained in a proper prime differential cone.

A (10) F (10)

Theorem 6 (Positivstellensatz for CODF)

Let $K \models CODF$. Let $S \subseteq K\{X_1, \ldots, X_n\}$ be finite and $W_S := \{\bar{x} \in K^n : g(\bar{x}) \ge 0 \text{ for any } g \in S\}.$ Let $f \in K\{X_1, \ldots, X_n\}$ and T_S be the cone of $K\{X_1, \ldots, X_n\}$ generated by S.

Suppose there is a T_S -convex proper differential ideal in $K\{\overline{X}\}$.

$$\forall \bar{x} \in W_{\mathcal{S}}, f(\bar{x}) \geq 0 \Leftrightarrow \exists m \in \mathbb{N}, g, h \in T_{\mathcal{S}} : f.g = f^{2m} + h.$$

Theorem 7

Let K be a model of CODF and S be a finite subset of $K\{\bar{X}\}$. We denote $T := T_S$ and $W := W_S$. Suppose that there is a T-convex proper differential ideal in $K\{\bar{X}\}$. Then

$$W = \varnothing \ iff \ -1 \in T$$

イロト イポト イヨト イヨト

Proof.

Assume that $-1 \notin T$ and let us show that W is nonempty. By the hypothesis, there is a T-convex proper differential ideal in $K\{\bar{X}\}$. By Proposition 4, T is contained in a proper differential cone. By Theorem 5, T is also contained in a proper prime differential cone P. The support I of P is a proper prime differential P-convex ideal. Let $L := \operatorname{Frac}(K\{\bar{X}\}/I)$, K is a differential subfield of L.

- the extension of P to L is a proper cone of L
- P is contained in an ordering P_L of L.

Taking $\bar{z} := \bar{X} + I$; one checks that for all $g \in S, g(\bar{z}) \ge 0$. So $L \models \exists \bar{Y} \bigwedge_{g \in S} g(\bar{Y}) \ge 0$. By model completeness of CODF (Fact 2), $K \models \exists \bar{Y} \bigwedge_{g \in S} g(\bar{Y}) \ge 0$ and so $W \neq \emptyset$.

・ロン ・四 ・ ・ ヨン ・ ヨン

Topological transfers

Theorem 8 (Singer's axiomatisation of CODF)

Let K be an ordered differential field, $K \models CODF$ iff

• K is a real closed field;

② for any $f, g_1, \ldots, g_m \in K\{X\}$, such that for all $i \in \{1, \ldots, m\}$, $n = ord(f) \ge ord(g_i)$. If there exist a_0, \ldots, a_n such that $f^*(a_0, \ldots, a_n) = 0$, $\frac{\partial}{\partial X_n} f^*(a_0, \ldots, a_n) \ne 0$ and $g_1^*(a_0, \ldots, a_n) > 0, \ldots, g_m^*(a_0, \ldots, a_n) > 0$, then there is $z \in K$ such that f(z) = 0 and $g_1(z) > 0, \ldots, g_m(z) > 0$.

Lemma 9 (Brihaye-Michaux-Rivière)

Let $K \models CODF$. Differential tuples, i.e., tuples of the shape $(\bar{u}, D(\bar{u}), D^2(\bar{u}), \dots, D^k(\bar{u}))$, are dense in $K^{n.k}$.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○臣○

Theorem 10 (Stengle's positivstellensatz)

Let $F \models RCF$. Let $S \subseteq F[X_1, ..., X_n]$ be finite and $W_S := \{\bar{x} \in F^n : g(\bar{x}) \ge 0 \text{ for any } g \in S\}.$ Let $f \in F[X_1, ..., X_n]$ and T_S be the cone of $F[X_1, ..., X_n]$ generated by S.

 $\forall \bar{x} \in W_S, f(\bar{x}) \ge 0 \Leftrightarrow \exists m \in \mathbb{N}, g, h \in T_S : f.g = f^{2m} + h.$

Theorem 11 (Positivstellensatz for CODF)

Let $K \models CODF$. Let $S \subseteq K\{X_1, ..., X_n\}$ be finite and $W_S := \{\bar{x} \in K^n : g(\bar{x}) \ge 0 \text{ for any } g \in S\}.$ Let $f \in K\{X_1, ..., X_n\}$ and T_S be the cone of $K\{X_1, ..., X_n\}$ generated by S.

Suppose moreover that there exists an open set $O \subseteq W_S^* \subseteq cl(O)$.

 $\forall \bar{x} \in W_S, f(\bar{x}) \ge 0 \Leftrightarrow \exists m \in \mathbb{N}, g, h \in T_S : f.g = f^{2m} + h.$

Let S be a finite subset of $\mathbb{R}[\bar{X}]$ where $\bar{X} := (X_1, \ldots, X_n)$.

Theorem 12 (Schmüdgen)

If W_S is compact, then for any $f \in \mathbb{R}[\bar{X}]$,

 $(\forall \bar{x} \in W_S, f(\bar{x}) > 0) \Rightarrow f \in T_S.$

Derivation D such that (\mathbb{R}, D) is a model of CODF Let S be a finite subset of $\mathbb{R}\{\overline{X}\}$.

Theorem 13

If W_S^* is compact and there is an open set $O \subseteq \mathbb{R}^{n \cdot (d+1)}$ such that $O \subseteq W_S^* \subseteq cl(O)$, where $d := \max_{g \in S} ord(g)$. Then for any $f \in \mathbb{R}\{\bar{X}\}$ of order e and any rational number q

$$(\forall \bar{x} \in W_S, f(\bar{x}) > q) \Rightarrow f \in T_E,$$

where $E := S \cup \{\pm X_i^{(j)} + r : i \in \{1, \dots, n\}, j \in \{d + 1, \dots, e + 1\}\}$ for a real number r > 0 (that may be chosen arbitrarily).