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The Question

X ⊂ RPn variety with dense real points.

What is the quantitative relationship between nonnegative
polynomials and sums of squares?

quantitative = degree bounds

Important points: X has a canonical presentation: the real
radical ideal I (X ).

Projective implies no degree cancellation. Rational function
certificates are necessary.

Reformulation: How do degree bounds depend on the geometry
of X?



Hilbert’s Theorem

Theorem: (Hilbert 1888) Nonnegative homogeneous polynomial p
is always a sum of squares only in the following three cases:

(1) Bivariate Forms (Univariate Polynomials)

(2) Quadratic Forms

(3) Forms of degree 4 in 3 variables (ternary quartics)

In all other cases there exist nonnegative polynomials that are not
sums of squares.



Generalizing Hllbert’s Theorem

R = R[x0, . . . , xn]/I (X ) is the coordinate ring of X .

Let PX ⊂ R2 be the set of quadratic forms nonnegative on X .

Let ΣX ⊂ R2 be the set of quadratic forms that are sums of
squares of linear forms in R.

Question: Classify real varieties X for which PX = ΣX .

This suffices by using the Veronese Embedding νd .

Example: ν2 : P2 → P5, [x : y : z ]→ [x2 : y2 : z2, xy , xz , yz ].
Let X = ν2(P2). Ternary Quartics: PX = ΣX .
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General Theorem

Theorem: (B., G. Smith, M. Velasco) Let X ⊂ RPn be an
irreducible nondegenerate projective variety with dense real points.

PX = ΣX if and only if X (C) is a variety of minimal degree.



Varieties of Minimal Degree

Let X ⊂ CPn be a nondegenerate, irreducible variety. Then

degX ≥ codimX + 1.

If equality is achieved then X is called a variety of minimal degree.

Theorem: (Del Pezzo 1886, Bertini 1908) X is a variety of
minimal degree if and only if X is one of the following:

(1) Quadratic Hypersurface
(2) Veronese Embedding of P2 into P5

(3) Rational Normal Scroll
(4) A (multiple) cone over any of the above



Number of Squares

Theorem: (B., D. Plaumann, R. Sinn, C. Vinzant) Let X ⊂ RPn

be a variety of minimal degree. Any polynomial in PX is a sum of
dimX + 1 squares.



Rational Sums of Squares on Curves

Theorem:(B., G. Smith, M. Velasco) Let X ⊂ Pn be a real curve of
degree d and arithmetic genus pa. Let f ∈ P2s be a nonnegative
form and let

k = max

(
regHB X ,

⌈
2pa − 1

d

⌉)
.

Then there exists h ∈ ΣX ,2k such that f · h ∈ Σ2s+2k .

Remarks:

• regHB X is the Hilbert regularity of X .

• Can take k = d − n + 1 = degX − codimX .

• The bound depends on simple (complex) geometric invariants
of X .

• The degree bound is independent of the degree of f .



Is It Tight?

• Can construct curves in Pn (any n) where the bound is tight.

• Rational Harnack curves on toric surfaces (and their
perturbations).

• Also have examples of curves where the bound is not tight.

• Can lift the bounds from curves to surfaces. For ternary octics
can show that 2k = 4 is the correct bound.
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THANK YOU!


