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Distances of elements in valued field extensions



notions

(K, v) a valued field, v written in the additive way:
v(x) =∞⇔ x = 0

v(xy) = v(x) + v(y)

v(x+ y) ≥ min{v(x), v(y)},
for all x, y ∈ K.

vK the value group,
Kv the residue field,

ṽK the divisible hull of vK,
K̃v the algebraic closure of Kv.
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the notion of distance

For every extension (L|K, v) of valued fields and a ∈ L we define

v(a−K) := {v(a− c) | c ∈ K}.

The set v(a−K) ∩ vK is an initial segment of vK.

Define the distance of a from K to be the cut
dist (a,K) := (ΛL,ΛR) in ṽK, where ΛL is the smallest initial
segment of ṽK containing

v(a−K) ∩ ṽK.
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distances in extensions of prime degree

Proposition 1
Take algebraic extensions (K(a)|K, v), (K(b)|K, v) of prime
degree and assume that the valuation v of K extends in a unique
way to the fields K(a) and K(b). Assume moreover that
v(b− a) > dist (a,K). Then

vK(a) = vK(b) and K(a)v = K(b)v.

Assume that (L|K, v) is a finite extension, v extends in a unique
way from K to L and p =charexp Kv. Then by the Lemma of
Ostrowski,

[L : K] = d(L|K, v)(vL : vK)[Lv : Kv],

where d(L|K, v) = pn for some n ≥ 0 is the defect of (L|K, v).
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distances in extensions of prime degree

Take a defectless extension (L|K, v) of prime degree and assume
that the valuation v of K extends in a unique way to L.
Then for every a ∈ L the set v(a−K) admits a maximal
element.

If vL = vK, then the distance of every element b ∈ L \K
from K is of the form

α+ := ({β ∈ ṽK |β ≤ α}, {β ∈ ṽK |β > α})

for some α ∈ vK. Conversely, for every α ∈ vK there is
b ∈ L \K such that dist (b,K) = α+.
If the value group extension vL|vK is nontrivial, then the
distance of every element b ∈ L \K from K is of the form
α+ for some α ∈ vL \ vK. Furthermore, for every
α ∈ vL \ vK there is b ∈ L \K such that dist (b,K) = α+.
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for some α ∈ vK. Conversely, for every α ∈ vK there is
b ∈ L \K such that dist (b,K) = α+.
If the value group extension vL|vK is nontrivial, then the
distance of every element b ∈ L \K from K is of the form
α+ for some α ∈ vL \ vK. Furthermore, for every
α ∈ vL \ vK there is b ∈ L \K such that dist (b,K) = α+.

Distances of elements in valued field extensions



distances in extensions of prime degree

Take a defectless extension (L|K, v) of prime degree and assume
that the valuation v of K extends in a unique way to L.
Then for every a ∈ L the set v(a−K) admits a maximal
element.

If vL = vK, then the distance of every element b ∈ L \K
from K is of the form
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immediate extensions

An extension (L|K, v) of valued fields is called immediate if
[vL : vK] = 1 = [Lv : Kv].

Theorem 1
An extension (L|K, v) of valued fields is immediate if and only if
for every element z ∈ L \K the set v(z −K) and has no
maximal element.

Take a sequence (aν)ν<λ of elements of K such that
(v(z − aν))ν<λ is strictly increasing and cofinal in v(z −K).

v(aτ − aσ) > v(aσ − aρ) if ρ < σ < τ < λ

v(z − aµ) > v(z − aν) if ν < µ < λ.

(aν)ν<λ is called a pseudo Cauchy sequence in (K, v),
z is called a pseudo limit of (aν)ν<λ
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immediate extensions

Pseudo Cauchy sequences are a useful tool in particular in
a proof of a theorem giving conditions for a valued field to
admit immediate extensions of infinite transcendence
degree.

A valued field is called maximal if it admits no proper
immediate extensions.

Every maximal field (M, v) is henselian and defectless.
A finite extension of maximal field is again a maximal field.

Theorem 2
Take a maximal field (K, v) of characteristic 0 or of positive
characteristic p and finite p-degree. If (L|K, v) is an algebraic
extension, then the field (L, v) is maximal if and only if L|K is
finite.

Distances of elements in valued field extensions



immediate extensions

Pseudo Cauchy sequences are a useful tool in particular in
a proof of a theorem giving conditions for a valued field to
admit immediate extensions of infinite transcendence
degree.

A valued field is called maximal if it admits no proper
immediate extensions.

Every maximal field (M, v) is henselian and defectless.
A finite extension of maximal field is again a maximal field.

Theorem 2
Take a maximal field (K, v) of characteristic 0 or of positive
characteristic p and finite p-degree. If (L|K, v) is an algebraic
extension, then the field (L, v) is maximal if and only if L|K is
finite.

Distances of elements in valued field extensions



immediate extensions

Pseudo Cauchy sequences are a useful tool in particular in
a proof of a theorem giving conditions for a valued field to
admit immediate extensions of infinite transcendence
degree.

A valued field is called maximal if it admits no proper
immediate extensions.

Every maximal field (M, v) is henselian and defectless.
A finite extension of maximal field is again a maximal field.

Theorem 2
Take a maximal field (K, v) of characteristic 0 or of positive
characteristic p and finite p-degree. If (L|K, v) is an algebraic
extension, then the field (L, v) is maximal if and only if L|K is
finite.

Distances of elements in valued field extensions



immediate extensions

Pseudo Cauchy sequences are a useful tool in particular in
a proof of a theorem giving conditions for a valued field to
admit immediate extensions of infinite transcendence
degree.

A valued field is called maximal if it admits no proper
immediate extensions.

Every maximal field (M, v) is henselian and defectless.
A finite extension of maximal field is again a maximal field.

Theorem 2
Take a maximal field (K, v) of characteristic 0 or of positive
characteristic p and finite p-degree. If (L|K, v) is an algebraic
extension, then the field (L, v) is maximal if and only if L|K is
finite.

Distances of elements in valued field extensions



immediate extensions

Pseudo Cauchy sequences are a useful tool in particular in
a proof of a theorem giving conditions for a valued field to
admit immediate extensions of infinite transcendence
degree.

A valued field is called maximal if it admits no proper
immediate extensions.

Every maximal field (M, v) is henselian and defectless.
A finite extension of maximal field is again a maximal field.

Theorem 2
Take a maximal field (K, v) of characteristic 0 or of positive
characteristic p and finite p-degree. If (L|K, v) is an algebraic
extension, then the field (L, v) is maximal if and only if L|K is
finite.

Distances of elements in valued field extensions



Artin-Schreier defect extensions

Assume that (K, v) is a valued field of characteristic p > 0,
K(ϑ)|K an Artin-Schreier defect extension with ϑp − ϑ− a = 0
for some a ∈ K.

dist (ϑ,K) does not depend on the choice of ϑ.

K(ϑ)|K is called a dependent Artin-Schreier defect extension if
there is an immediate purely inseparable extension K(η)|K of
degree p such that v(η − ϑ) > dist (ϑ,K). Otherwise it is called
an independent Artin-Schreier defect extension.

Proposition 2
The Artin-Schreier defect extension K(ϑ)|K is independent if
and only if dist (ϑ,K) = H− for some proper convex subgroup
H of ṽK.

H− = ({α ∈ ṽK |α < H}, {α ∈ ṽK | ∃β ∈ H β ≥ α})
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The structure of maximal immediate extensions

Applications of the classification of A.-S. defect extensions:
a characterization of defectless fields of positive char.,
the structure of maximal immediate extensions of valued
fields.

Every valued field admits a maximal immediate extension.
Kaplansky proved that under a certain condition, which he
called “hypothesis A”, the maximal immediate extensions
are unique up to isomorphism.
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The structure of maximal immediate extensions

Theorem 3
Take a henselian field (K, v) of positive residue characteristic p
with p-divisible value group and perfect residue field. Assume
that (K, v) admits a maximal immediate extension of finite
transcendence degree.Then

(K, v) admits no immediate separable-algebraic extensions,
If charK = p, then K1/p∞ ⊆ Kc,
the maximal immediate extension of (K, v) is unique up to
isomorphism.

Theorem 4
There are valued fields which admit an algebraic maximal
immediate extension as well as one of infinite transcendence
degree.
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