Distances of elements in valued field extensions

Anna Blaszczok

Institute of Mathematics, University of Silesia

Ordered Algebraic Structures and Related Topics October 13, 2015

Distances of elements in valued field extensions

notions

 $(\boldsymbol{K},\boldsymbol{v})$ a valued field, \boldsymbol{v} written in the additive way:

•
$$v(x) = \infty \Leftrightarrow x = 0$$

•
$$v(xy) = v(x) + v(y)$$

• $v(x+y) \ge \min\{v(x), v(y)\},$

for all $x, y \in K$.

vK the value group, Kv the residue field,

 \widetilde{vK} the divisible hull of vK, \widetilde{Kv} the algebraic closure of Kv.

notions

 $(\boldsymbol{K},\boldsymbol{v})$ a valued field, \boldsymbol{v} written in the additive way:

•
$$v(x) = \infty \Leftrightarrow x = 0$$

•
$$v(xy) = v(x) + v(y)$$

• $v(x+y) \ge \min\{v(x), v(y)\},$

for all $x, y \in K$.

vK the value group, Kv the residue field,

 \widetilde{vK} the divisible hull of vK, \widetilde{Kv} the algebraic closure of Kv.

the notion of distance

For every extension (L|K, v) of valued fields and $a \in L$ we define

$$v(a - K) := \{v(a - c) \mid c \in K\}.$$

• The set $v(a - K) \cap vK$ is an initial segment of vK.

Define the **distance of** a from K to be the cut dist $(a, K) := (\Lambda_L, \Lambda_R)$ in \widetilde{vK} , where Λ_L is the smallest initial segment of \widetilde{vK} containing

$$v(a-K) \cap \widetilde{vK}.$$

Distances of elements in valued field extensions

For every extension (L|K, v) of valued fields and $a \in L$ we define

$$v(a - K) := \{ v(a - c) \, | \, c \in K \}.$$

• The set $v(a - K) \cap vK$ is an initial segment of vK.

Define the **distance of** a from K to be the cut dist $(a, K) := (\Lambda_L, \Lambda_R)$ in \widetilde{vK} , where Λ_L is the smallest initial segment of \widetilde{vK} containing

$$v(a-K) \cap \widetilde{vK}.$$

Distances of elements in valued field extensions

- ▲ 厘 ▶ - ▲ 厘 ▶ - -

For every extension (L|K, v) of valued fields and $a \in L$ we define

$$v(a - K) := \{ v(a - c) \, | \, c \in K \}.$$

• The set $v(a - K) \cap vK$ is an initial segment of vK.

Define the **distance of** a **from** K to be the cut dist $(a, K) := (\Lambda_L, \Lambda_R)$ in \widetilde{vK} , where Λ_L is the smallest initial segment of \widetilde{vK} containing

$$v(a-K) \cap \widetilde{vK}.$$

Distances of elements in valued field extensions

Take algebraic extensions (K(a)|K, v), (K(b)|K, v) of prime degree and assume that the valuation v of K extends in a unique way to the fields K(a) and K(b). Assume moreover that v(b-a) > dist(a, K). Then

vK(a) = vK(b) and K(a)v = K(b)v.

Assume that (L|K, v) is a finite extension, v extends in a unique way from K to L and p =charexp Kv. Then by the Lemma of Ostrowski,

$$[L:K] = d(L|K,v)(vL:vK)[Lv:Kv],$$

Take algebraic extensions (K(a)|K, v), (K(b)|K, v) of prime degree and assume that the valuation v of K extends in a unique way to the fields K(a) and K(b). Assume moreover that v(b-a) > dist(a, K). Then

vK(a) = vK(b) and K(a)v = K(b)v.

Assume that (L|K, v) is a finite extension, v extends in a unique way from K to L and p =charexp Kv. Then by the Lemma of Ostrowski,

$$[L:K] = d(L|K,v)(vL:vK)[Lv:Kv],$$

Take algebraic extensions (K(a)|K, v), (K(b)|K, v) of prime degree and assume that the valuation v of K extends in a unique way to the fields K(a) and K(b). Assume moreover that v(b-a) > dist(a, K). Then

$$vK(a) = vK(b)$$
 and $K(a)v = K(b)v$.

Assume that (L|K, v) is a finite extension, v extends in a unique way from K to L and p =charexp Kv. Then by the Lemma of Ostrowski,

$$[L:K] = d(L|K,v)(vL:vK)[Lv:Kv],$$

Take algebraic extensions (K(a)|K, v), (K(b)|K, v) of prime degree and assume that the valuation v of K extends in a unique way to the fields K(a) and K(b). Assume moreover that v(b-a) > dist(a, K). Then

$$vK(a) = vK(b)$$
 and $K(a)v = K(b)v$.

Assume that (L|K, v) is a finite extension, v extends in a unique way from K to L and p =charexp Kv. Then by the Lemma of Ostrowski,

$$[L:K] = d(L|K,v)(vL:vK)[Lv:Kv],$$

Take a defectless extension (L|K, v) of prime degree and assume that the valuation v of K extends in a unique way to L. Then for every $a \in L$ the set v(a - K) admits a maximal element.

• If vL = vK, then the distance of every element $b \in L \setminus K$ from K is of the form

$$\alpha^+ := \left(\{ \beta \in \widetilde{vK} \, | \, \beta \le \alpha \}, \{ \beta \in \widetilde{vK} \, | \, \beta > \alpha \} \right)$$

for some $\alpha \in vK$. Conversely, for every $\alpha \in vK$ there is $b \in L \setminus K$ such that $\operatorname{dist}(b, K) = \alpha^+$.

• If the value group extension vL|vK is nontrivial, then the distance of every element $b \in L \setminus K$ from K is of the form α^+ for some $\alpha \in vL \setminus vK$. Furthermore, for every $\alpha \in vL \setminus vK$ there is $b \in L \setminus K$ such that dist $(b, K) = \alpha^+$

(本部) (本語) (本語) (二百

Take a defectless extension (L|K, v) of prime degree and assume that the valuation v of K extends in a unique way to L. Then for every $a \in L$ the set v(a - K) admits a maximal element.

• If vL = vK, then the distance of every element $b \in L \setminus K$ from K is of the form

$$\alpha^+ := \left(\{ \beta \in \widetilde{vK} \, | \, \beta \le \alpha \}, \{ \beta \in \widetilde{vK} \, | \, \beta > \alpha \} \right)$$

for some $\alpha \in vK$. Conversely, for every $\alpha \in vK$ there is $b \in L \setminus K$ such that $\operatorname{dist}(b, K) = \alpha^+$.

• If the value group extension vL|vK is nontrivial, then the distance of every element $b \in L \setminus K$ from K is of the form α^+ for some $\alpha \in vL \setminus vK$. Furthermore, for every $\alpha \in vL \setminus vK$ there is $b \in L \setminus K$ such that dist $(b, K) = \alpha^+$

(本間) (本臣) (本臣) (臣)

Take a defectless extension (L|K, v) of prime degree and assume that the valuation v of K extends in a unique way to L. Then for every $a \in L$ the set v(a - K) admits a maximal element.

• If vL = vK, then the distance of every element $b \in L \setminus K$ from K is of the form

$$\alpha^{+} := \left(\{ \beta \in \widetilde{vK} \, | \, \beta \le \alpha \}, \{ \beta \in \widetilde{vK} \, | \, \beta > \alpha \} \right)$$

for some $\alpha \in vK$. Conversely, for every $\alpha \in vK$ there is $b \in L \setminus K$ such that $\operatorname{dist}(b, K) = \alpha^+$.

• If the value group extension vL|vK is nontrivial, then the distance of every element $b \in L \setminus K$ from K is of the form α^+ for some $\alpha \in vL \setminus vK$. Furthermore, for every $\alpha \in vL \setminus vK$ there is $b \in L \setminus K$ such that dist $(b, K) = \alpha^+$

(本部) (本語) (本語) (二百

Take a defectless extension (L|K, v) of prime degree and assume that the valuation v of K extends in a unique way to L. Then for every $a \in L$ the set v(a - K) admits a maximal element.

• If vL = vK, then the distance of every element $b \in L \setminus K$ from K is of the form

$$\alpha^{+} := \left(\{ \beta \in \widetilde{vK} \, | \, \beta \le \alpha \}, \{ \beta \in \widetilde{vK} \, | \, \beta > \alpha \} \right)$$

for some $\alpha \in vK$. Conversely, for every $\alpha \in vK$ there is $b \in L \setminus K$ such that $\operatorname{dist}(b, K) = \alpha^+$.

• If the value group extension vL|vK is nontrivial, then the distance of every element $b \in L \setminus K$ from K is of the form α^+ for some $\alpha \in vL \setminus vK$. Furthermore, for every $\alpha \in vL \setminus vK$ there is $b \in L \setminus K$ such that dist $(b, K) = \alpha^+$.

Theorem 1

An extension (L|K, v) of valued fields is immediate if and only if for every element $z \in L \setminus K$ the set v(z - K) and has no maximal element.

Take a sequence $(a_{\nu})_{\nu < \lambda}$ of elements of K such that $(v(z - a_{\nu}))_{\nu < \lambda}$ is strictly increasing and cofinal in v(z - K).

•
$$v(a_{\tau} - a_{\sigma}) > v(a_{\sigma} - a_{\rho})$$
 if $\rho < \sigma < \tau < \lambda$

•
$$v(z - a_{\mu}) > v(z - a_{\nu})$$
 if $\nu < \mu < \lambda$.

 $(a_{\nu})_{\nu < \lambda}$ is called a **pseudo Cauchy sequence in** (K, v), z is called a **pseudo limit** of $(a_{\nu})_{\nu < \lambda}$

Theorem 1

An extension (L|K, v) of valued fields is immediate if and only if for every element $z \in L \setminus K$ the set v(z - K) and has no maximal element.

Take a sequence $(a_{\nu})_{\nu < \lambda}$ of elements of K such that $(v(z - a_{\nu}))_{\nu < \lambda}$ is strictly increasing and cofinal in v(z - K).

•
$$v(a_{\tau} - a_{\sigma}) > v(a_{\sigma} - a_{\rho})$$
 if $\rho < \sigma < \tau < \lambda$

•
$$v(z - a_{\mu}) > v(z - a_{\nu})$$
 if $\nu < \mu < \lambda$.

 $(a_{\nu})_{\nu < \lambda}$ is called a **pseudo Cauchy sequence in** (K, v), z is called a **pseudo limit** of $(a_{\nu})_{\nu < \lambda}$

A B F A B F

Theorem 1

An extension (L|K, v) of valued fields is immediate if and only if for every element $z \in L \setminus K$ the set v(z - K) and has no maximal element.

Take a sequence $(a_{\nu})_{\nu < \lambda}$ of elements of K such that $(v(z - a_{\nu}))_{\nu < \lambda}$ is strictly increasing and cofinal in v(z - K).

•
$$v(a_{\tau} - a_{\sigma}) > v(a_{\sigma} - a_{\rho})$$
 if $\rho < \sigma < \tau < \lambda$

•
$$v(z-a_{\mu}) > v(z-a_{\nu})$$
 if $\nu < \mu < \lambda$.

 $(a_{\nu})_{\nu < \lambda}$ is called a **pseudo Cauchy sequence in** (K, v), z is called a **pseudo limit** of $(a_{\nu})_{\nu < \lambda}$

Theorem 1

An extension (L|K, v) of valued fields is immediate if and only if for every element $z \in L \setminus K$ the set v(z - K) and has no maximal element.

Take a sequence $(a_{\nu})_{\nu < \lambda}$ of elements of K such that $(v(z - a_{\nu}))_{\nu < \lambda}$ is strictly increasing and cofinal in v(z - K).

• $v(a_{\tau} - a_{\sigma}) > v(a_{\sigma} - a_{\rho})$ if $\rho < \sigma < \tau < \lambda$

• $v(z-a_{\mu}) > v(z-a_{\nu})$ if $\nu < \mu < \lambda$.

 $(a_{\nu})_{\nu < \lambda}$ is called a **pseudo Cauchy sequence in** (K, v), z is called a **pseudo limit** of $(a_{\nu})_{\nu < \lambda}$

Theorem 1

An extension (L|K, v) of valued fields is immediate if and only if for every element $z \in L \setminus K$ the set v(z - K) and has no maximal element.

Take a sequence $(a_{\nu})_{\nu < \lambda}$ of elements of K such that $(v(z - a_{\nu}))_{\nu < \lambda}$ is strictly increasing and cofinal in v(z - K).

•
$$v(a_{\tau} - a_{\sigma}) > v(a_{\sigma} - a_{\rho})$$
 if $\rho < \sigma < \tau < \lambda$

•
$$v(z - a_{\mu}) > v(z - a_{\nu})$$
 if $\nu < \mu < \lambda$.

 $(a_{\nu})_{\nu < \lambda}$ is called a **pseudo Cauchy sequence in** (K, v), z is called a **pseudo limit** of $(a_{\nu})_{\nu < \lambda}$

Theorem 1

An extension (L|K, v) of valued fields is immediate if and only if for every element $z \in L \setminus K$ the set v(z - K) and has no maximal element.

Take a sequence $(a_{\nu})_{\nu < \lambda}$ of elements of K such that $(v(z - a_{\nu}))_{\nu < \lambda}$ is strictly increasing and cofinal in v(z - K).

•
$$v(a_{\tau} - a_{\sigma}) > v(a_{\sigma} - a_{\rho})$$
 if $\rho < \sigma < \tau < \lambda$

•
$$v(z - a_{\mu}) > v(z - a_{\nu})$$
 if $\nu < \mu < \lambda$.

 $(a_{\nu})_{\nu < \lambda}$ is called a **pseudo Cauchy sequence in** (K, v), z is called a **pseudo limit** of $(a_{\nu})_{\nu < \lambda}$

• Pseudo Cauchy sequences are a useful tool in particular in a proof of a theorem giving conditions for a valued field to admit immediate extensions of infinite transcendence degree.

A valued field is called **maximal** if it admits no proper immediate extensions.

- Every maximal field (M, v) is henselian and defectless.
- A finite extension of maximal field is again a maximal field.

Theorem 2

• Pseudo Cauchy sequences are a useful tool in particular in a proof of a theorem giving conditions for a valued field to admit immediate extensions of infinite transcendence degree.

A valued field is called **maximal** if it admits no proper immediate extensions.

- Every maximal field (M, v) is henselian and defectless.
- A finite extension of maximal field is again a maximal field.

Theorem 2

• Pseudo Cauchy sequences are a useful tool in particular in a proof of a theorem giving conditions for a valued field to admit immediate extensions of infinite transcendence degree.

A valued field is called **maximal** if it admits no proper immediate extensions.

- Every maximal field (M, v) is henselian and defectless.
- A finite extension of maximal field is again a maximal field.

Theorem 2

• Pseudo Cauchy sequences are a useful tool in particular in a proof of a theorem giving conditions for a valued field to admit immediate extensions of infinite transcendence degree.

A valued field is called **maximal** if it admits no proper immediate extensions.

- Every maximal field (M, v) is henselian and defectless.
- A finite extension of maximal field is again a maximal field.

Theorem 2

• Pseudo Cauchy sequences are a useful tool in particular in a proof of a theorem giving conditions for a valued field to admit immediate extensions of infinite transcendence degree.

A valued field is called **maximal** if it admits no proper immediate extensions.

- Every maximal field (M, v) is henselian and defectless.
- A finite extension of maximal field is again a maximal field.

Theorem 2

Assume that (K, v) is a valued field of characteristic p > 0, $K(\vartheta)|K$ an Artin-Schreier defect extension with $\vartheta^p - \vartheta - a = 0$ for some $a \in K$.

• dist (ϑ, K) does not depend on the choice of ϑ .

 $K(\vartheta)|K$ is called a dependent Artin-Schreier defect extension if there is an immediate purely inseparable extension $K(\eta)|K$ of degree p such that $v(\eta - \vartheta) > \text{ dist } (\vartheta, K)$. Otherwise it is called an independent Artin-Schreier defect extension.

Proposition 2

The Artin-Schreier defect extension $K(\vartheta)|K$ is independent if and only if dist $(\vartheta, K) = H^-$ for some proper convex subgroup H of \widetilde{vK} .

 $H^{-} = \left(\{ \alpha \in \widetilde{vK} \, | \, \alpha < H \}, \{ \alpha \in \widetilde{vK} \, | \, \exists \beta \in H \ \beta \ge \alpha \} \right)$

Assume that (K, v) is a valued field of characteristic p > 0, $K(\vartheta)|K$ an Artin-Schreier defect extension with $\vartheta^p - \vartheta - a = 0$ for some $a \in K$.

• dist (ϑ, K) does not depend on the choice of ϑ .

 $K(\vartheta)|K$ is called a dependent Artin-Schreier defect extension if there is an immediate purely inseparable extension $K(\eta)|K$ of degree p such that $v(\eta - \vartheta) > \text{ dist } (\vartheta, K)$. Otherwise it is called an independent Artin-Schreier defect extension.

Proposition 2

The Artin-Schreier defect extension $K(\vartheta)|K$ is independent if and only if dist $(\vartheta, K) = H^-$ for some proper convex subgroup H of \widetilde{vK} .

 $H^{-} = \left(\{ \alpha \in \widetilde{vK} \, | \, \alpha < H \}, \{ \alpha \in \widetilde{vK} \, | \, \exists \beta \in H \ \beta \ge \alpha \} \right)$

Assume that (K, v) is a valued field of characteristic p > 0, $K(\vartheta)|K$ an Artin-Schreier defect extension with $\vartheta^p - \vartheta - a = 0$ for some $a \in K$.

• dist (ϑ, K) does not depend on the choice of ϑ .

 $K(\vartheta)|K$ is called a dependent Artin-Schreier defect extension if there is an immediate purely inseparable extension $K(\eta)|K$ of degree p such that $v(\eta - \vartheta) > \text{ dist } (\vartheta, K)$. Otherwise it is called an independent Artin-Schreier defect extension.

Proposition 2

The Artin-Schreier defect extension $K(\vartheta)|K$ is independent if and only if dist $(\vartheta, K) = H^-$ for some proper convex subgroup H of \widetilde{vK} .

 $H^{-} = \left(\{ \alpha \in \widetilde{vK} \, | \, \alpha < H \}, \{ \alpha \in \widetilde{vK} \, | \, \exists \beta \in H \ \beta \ge \alpha \} \right)$

A B > A B >

Assume that (K, v) is a valued field of characteristic p > 0, $K(\vartheta)|K$ an Artin-Schreier defect extension with $\vartheta^p - \vartheta - a = 0$ for some $a \in K$.

• dist (ϑ, K) does not depend on the choice of ϑ .

 $K(\vartheta)|K$ is called a dependent Artin-Schreier defect extension if there is an immediate purely inseparable extension $K(\eta)|K$ of degree p such that $v(\eta - \vartheta) > \text{ dist } (\vartheta, K)$. Otherwise it is called an independent Artin-Schreier defect extension.

Proposition 2

The Artin-Schreier defect extension $K(\vartheta)|K$ is independent if and only if dist $(\vartheta, K) = H^-$ for some proper convex subgroup H of \widetilde{vK} .

 $H^{-} = \left(\{ \alpha \in \widetilde{vK} \, | \, \alpha < H \}, \{ \alpha \in \widetilde{vK} \, | \, \exists \beta \in H \ \beta \ge \alpha \} \right)$

Assume that (K, v) is a valued field of characteristic p > 0, $K(\vartheta)|K$ an Artin-Schreier defect extension with $\vartheta^p - \vartheta - a = 0$ for some $a \in K$.

• dist (ϑ, K) does not depend on the choice of ϑ .

 $K(\vartheta)|K$ is called a dependent Artin-Schreier defect extension if there is an immediate purely inseparable extension $K(\eta)|K$ of degree p such that $v(\eta - \vartheta) > \text{ dist } (\vartheta, K)$. Otherwise it is called an independent Artin-Schreier defect extension.

Proposition 2

The Artin-Schreier defect extension $K(\vartheta)|K$ is independent if and only if dist $(\vartheta, K) = H^-$ for some proper convex subgroup H of \widetilde{vK} .

$$H^{-} = (\{\alpha \in \widetilde{vK} \, | \, \alpha < H\}, \{\alpha \in \widetilde{vK} \, | \, \exists \beta \in H \ \beta \ge \alpha\})$$

Applications of the classification of A.-S. defect extensions:

- a characterization of defectless fields of positive char.,
- the structure of maximal immediate extensions of valued fields.

Every valued field admits a maximal immediate extension.

Applications of the classification of A.-S. defect extensions:

- a characterization of defectless fields of positive char.,
- the structure of maximal immediate extensions of valued fields.

Every valued field admits a maximal immediate extension.

Applications of the classification of A.-S. defect extensions:

- a characterization of defectless fields of positive char.,
- the structure of maximal immediate extensions of valued fields.

Every valued field admits a maximal immediate extension.

Applications of the classification of A.-S. defect extensions:

- a characterization of defectless fields of positive char.,
- the structure of maximal immediate extensions of valued fields.

Every valued field admits a maximal immediate extension.

Theorem 3

Take a henselian field (K, v) of positive residue characteristic pwith p-divisible value group and perfect residue field. Assume that (K, v) admits a maximal immediate extension of finite transcendence degree. Then

- (K, v) admits no immediate separable-algebraic extensions,
- If charK = p, then $K^{1/p^{\infty}} \subseteq K^c$,
- the maximal immediate extension of (K, v) is unique up to isomorphism.

Theorem 4

There are valued fields which admit an algebraic maximal immediate extension as well as one of infinite transcendence degree.

→ Ξ → - +

Theorem 3

Take a henselian field (K, v) of positive residue characteristic p with p-divisible value group and perfect residue field. Assume that (K, v) admits a maximal immediate extension of finite transcendence degree. Then

- (K, v) admits no immediate separable-algebraic extensions,
- If charK = p, then $K^{1/p^{\infty}} \subseteq K^c$,
- the maximal immediate extension of (K, v) is unique up to isomorphism.

Theorem 4

There are valued fields which admit an algebraic maximal immediate extension as well as one of infinite transcendence degree.

(4) (3) (4) (4) (4)

Theorem 3

Take a henselian field (K, v) of positive residue characteristic p with p-divisible value group and perfect residue field. Assume that (K, v) admits a maximal immediate extension of finite transcendence degree. Then

- (K, v) admits no immediate separable-algebraic extensions,
- If charK = p, then $K^{1/p^{\infty}} \subseteq K^c$,
- the maximal immediate extension of (K, v) is unique up to isomorphism.

Theorem 4

There are valued fields which admit an algebraic maximal immediate extension as well as one of infinite transcendence degree.

(4) (3) (4) (4) (4)

Theorem 3

Take a henselian field (K, v) of positive residue characteristic p with p-divisible value group and perfect residue field. Assume that (K, v) admits a maximal immediate extension of finite transcendence degree. Then

• (K, v) admits no immediate separable-algebraic extensions,

• If
$$charK = p$$
, then $K^{1/p^{\infty}} \subseteq K^c$,

• the maximal immediate extension of (K, v) is unique up to isomorphism.

Theorem 4

There are valued fields which admit an algebraic maximal immediate extension as well as one of infinite transcendence degree.

Theorem 3

Take a henselian field (K, v) of positive residue characteristic p with p-divisible value group and perfect residue field. Assume that (K, v) admits a maximal immediate extension of finite transcendence degree. Then

• (K, v) admits no immediate separable-algebraic extensions,

• If
$$charK = p$$
, then $K^{1/p^{\infty}} \subseteq K^c$,

• the maximal immediate extension of (K, v) is unique up to isomorphism.

Theorem 4

There are valued fields which admit an algebraic maximal immediate extension as well as one of infinite transcendence degree.

Theorem 3

Take a henselian field (K, v) of positive residue characteristic p with p-divisible value group and perfect residue field. Assume that (K, v) admits a maximal immediate extension of finite transcendence degree. Then

• (K, v) admits no immediate separable-algebraic extensions,

• If
$$charK = p$$
, then $K^{1/p^{\infty}} \subseteq K^c$,

• the maximal immediate extension of (K, v) is unique up to isomorphism.

Theorem 4

There are valued fields which admit an algebraic maximal immediate extension as well as one of infinite transcendence degree.

→ 3 → 4 3

Bibliography

- Blaszczok A., Infinite towers of Artin-Schreier defect extensions of rational function fields, in: Valuation Theory in Interaction, Campillo A., Kuhlmann F.-V., Teissier B. (Eds.), EMS Series of Congress Reports (2014), 16–54.
- Blaszczok A., Kuhlmann F.-V.: Algebraic independence of elements in immediate extensions of valued fields, J. Alg. 425 (2015), 179—214
- Blaszczok A., Kuhlmann F.-V.: On maximal immediate extensions of valued fields, submitted.
- Kaplansky, I., Maximal fields with valuations I, Duke Math. J. 9 (1942), 303–321.
- Kuhlmann, F.-V., A classification of Artin-Schreier defect extensions and characterizations of defectless fields, Illinois J. Math. 54 (2010), 397–448.