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Strong mixing

Strong mixing

A unitary operator U in a Hilbert space H is a surjective isometry:

uUu=uUur=1.

Example (Discrete group of unitary operators)

If U is a unitary operator in a Hilbert space H,
U,=U", neZ,

defines a discrete 1-parameter group of unitary operators.




Strong mixing

Example (Continuous group of unitary operators)

If H is a self-adjoint operator in a Hilbert space H, then
Ut = e_itH, t e R,

defines a strongly continuous 1-parameter group of unitary operators.

Example (Koopman operator)

If T: X — X is an automorphism of a probability space (X, 1), then the
Koopman operator

Ur :P(X,p) = (X, 1), @ poT,

is a unitary operator.




Strong mixing

Ergodicity, weak mixing and strong mixing of an automorphism
T : X — X are expressible in terms of the Koopman operator Ur:

e T is ergodic iff 1 is a simple eigenvalue of Ur.
e T is weakly mixing iff Ut has purely continuous spectrum in {C-1}+.

e T is strongly mixing iff

lim (o, (UT)Ncp> =0 forallpe{C-1}+.
N—o0

strong — weak

a.c. spectrum in {C-1}+ = mixing mixing = ergodicity




Commutators

e 7, Hilbert space with norm || - || and scalar product (-, -)
e Z(H), bounded linear operators on ‘H
e A, self-adjoint operator in H with domain D(A)
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Definition
An operator S € %(H) satisfies S € CK(A) if

R >t e M Se™ ¢ B(H)

is strongly of class Ck.

S € CY(A) if and only if
|(Ag, Sp) — (p, SAp)| < Const. ol for all ¢ € D(A).

The operator corresponding to the continuous extension of the quadratic
form is denoted by [S, A], and one has

[iS,A]l =s- 4

i e M SeA ¢ B(H).

t=0
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Definition

A self-adjoint operator H in H is of class CX(A) if (H — z)~! € CK(A) for
some z € C\ o(H).

If H is of class C1(A), then
[A(H=2)""] = (H=2)"'[H,A][(H - 2) ",

with [H, A] € (D(H), D(H)*) the operator corresponding to the
continuous extension to D(H) of the quadratic form

D(H)ND(A) 3 ¢ — (Hp,Ap) — (Ap, Hy) € C.



Discrete groups

Discrete groups

Theorem (Strong mixing for discrete groups)

Let U and A be a unitary and a self-adjoint operator in H, with
U € CY(A). Assume that

N-1
o ]- n = —n
D= ?vﬂ’!‘oﬁ 2) U ([A, UlJU U

exists, and suppose that n(D)D(A) C D(A) for each n € C°(R\ {0}).
Then,

(a) limy_soo (0, UNY) = 0 for each ¢ € ker(D)* and ¢ € H,
(b) Ulker(py+ has purely continuous spectrum.




Discrete groups

D is bounded and self-adjoint because it is the strong limit of
bounded self-adjoint operators.

e 7(D) with n € C(R\ {0}) is well-defined by functional calculus.

e DU" = U"D for each n € Z. So, ker(D)* is a reducing subspace for
U, and Ulyer(pyL is a unitary operator.

e Point (b) is a simple consequence of point (a).
e Point (b) could be compared with the Virial theorem for unitary
operators (“CY(A) +---" = continuous spectrum).
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Discrete groups

Sketch of the proof of (a). Since U € C1(A), one has UN € C(A) with

N-1
(A UM =) uNTEA vU”
n=0

N—1
— (Z UN_l_n([A, U] U—l)un—i—l—N) UN

n=0

N—-1

_ (Z U"([A, u1u—1)u—"> ul
n=0

= NDyUN

and

1 N—-1
Dy =3 Z;) Un([A, U U
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Discrete groups

So, we have for ¢ = n(D)¢ with ¢ € D(A) and ¢ € D(A)

Dy — D)D" (D) - [ + 1 [{D (D), [A, UM
Dy — D)D" *n(D)e]| - [[¢]

+ % [(AD™ (D), UNy) — (D~ n(D)y, UNAY)|
< [|(on = D)D" n(D)ee]| - [l

+ 2 (IAD~n()e| - [9]) + [[D~ (D)ol - I1A4w]),

(
{(Dn — D)D™'(D)p, UN)| + |{D~'n(D)p, Dy UV )|
(
(

which goes to 0 as N — oc.



Discrete groups

If> n>1 I(Dn — D)¢l||? < oo for suitable o € H, then

Z |<g0, UNcp>‘2 < oo forall ¢ € ker(D)*,
N>1

and Ulyey(pyr has purely a.c. spectrum.
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Discrete groups

Example (Skew products of compact Lie groups)
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Continuous groups

Continuous groups

Theorem (Strong mixing for continuous groups)

Let H and A be self-adjoint operators in H, with (H — i)~ € C1(A).
Assume that

1t ,
D :=s-lim / ds eH(H + i) 7I[iH, A|(H — i) te "
0

t—oo t

exists, and suppose that n(D)D(A) C D(A) for eachn € C(R\ {0}).
Then,

(a) limsoo (0, e 4p) =0 for each ¢ € H and ¥ € ker(D)*,
(b) Hlwer(pyL has purely continuous spectrum.
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Continuous groups

Example (Canonical commutation relation)

Assume that (H — i)~t € C1(A) with [iH,A] = 1. Then, for all t > 0

1/t :
D; = t/ ds e*H(H+ )Y[iH,AJ(H— i) te ™" = (H? +1)" =D
0

and ker(D) = {0}. So, the theorem implies that H has purely a.c.
spectrum. In fact, we have in this case the Weyl commutation relation

e—ItA elsH e:tA — elst eISH’ s, te R.

Thus, Stone-von Neumann theorem implies that H has Lebesgue spectrum
with uniform multiplicity.
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Time changes of horocycle flows

Example (Time changes of horocycle flows).

e > compact Riemannian surface of constant negative curvature

e M:=TIX unit tangent bundle of &
(M is a compact 3-manifold with probability measure 1,
M ~ T\ PSL(2;R) for some cocompact lattice ' in PSL(2;R))

o Fp = {Fh7t}teR’ horocycle flow on M

o o= {ngt}teR’ geodesic flow on M

The flows Fj, F; are one-parameter groups of diffeomorphisms preserving
the measure p.
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Time changes of horocycle flows

Geodesic flow in the Poincaré half plane
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Time changes of horocycle flows

(z,¢)

(zt?Ct)

Positive horocycle flow in the Poincaré half plane
(from Bekka/Mayer's book)
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Time changes of horocycle flows

Geodesics and horocycles in the Poincaré half plane
(from Hasselblatt/Katok's book)
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Time changes of horocycle flows

Each flow has an essentially self-adjoint generator
Hi = —iXjp, @€ C®(M)CL*(M,p),
with X; the vector field associated to Fj. Hj, is of class C*(Hg) with
[iHp, Hg] = H.

A C'-time change of X} is a vector field X with f € C*(M;(0,00)).

f Xy, has a complete flow Fh = {F;7 t }ter With generator H := f H,
essentially self-adjoint on CY(M) C H := L2(M, f~1p).
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The operator
A= f2H 1/

is self-adjoint in H, and (H — i)~ € C}(A) with
(H+ i)Y iH,A((H— i)™t = (H+ i)"Y (HE+ EH)(H — i) 7!

and

1 1.
§=5 =5 X(f).
So,
D; := I/tds eSH(H + N 7LiH,A(H — i)t e *H
tJo
= (H+ i) (H& + &eH) (H — i) !
with

1 [t . . 1 [t ~
&= / ds eH ge=isH — / ds (fo Fh’_s).
tJo t Jo



Time changes of horocycle flows

Since Fj, is uniquely ergodic with respect to pu, Fh is uniquely ergodic with

respect to [ := T fl Thus,

Tdp-

11 1 1
| - TR 2D, X € I R — X, (F1) ==
A6 =3 2/Md“ «(f) 2+2fo1du/Mdu s(F) =3

uniformly on M, and

D:=s-limDi=(H+i) " (H-3+3 - H)(H-i) ' =H(H>*+1)"

t—o0

So, ker(D) = ker(H), and the theorem implies that

lim (p,e”™ ) =0 forall p € H and ¥ € ker(H)* .

t—o00

Therefore, C1-time changes of horocycle flows are strongly mixing.
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Time changes of horocycle flows

Thank you !
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