On one-parameter Koopman groups

Tom ter Elst

University of Auckland

Joint work with Mariusz Lemańczyk.

1-10-2015

1-10-2015

1 / total

Outline

2 Derivations

3 Application

5 Invariance

Koopman operators

Let (X, \mathcal{B}, μ) be a standard Borel probability space. Let $T \colon X \to X$ be an (a.e.) invertible, measurable and measure-preserving map.

Define $U_T \colon L_2(X) \to L_2(X)$ by

$$U_T f := f \circ T$$
 for all $f \in L_2(X)$.

Name: Koopman operator. Clearly U_T is unitary.

Problem How to recognize that a unitary operator is a Koopman operator? Or unitarily equivalent to a Koopman operator?

Theorem A unitary operator U on $L_2(X)$ is a Koopman operator if and only if

$$U(f g) = U(f) U(g)$$

for all $f, g \in L_{\infty}(X)$.

Koopman group

Definition A unitary one-parameter C_0 -group $(U_t)_{t \in \mathbb{R}}$ is called a Koopman group if for all $t \in \mathbb{R}$ there exists a measurable $T_t \colon X \to X$ such that

$$U_t f = f \circ T_t$$
 for all $f \in L_2(X)$.

Clearly: if $(U_t)_{t \in \mathbb{R}}$ is a Koopman group, then

 $U_t L_\infty(X) \subset L_\infty(X)$

for all $t \in \mathbb{R}$.

Theorem (Stone) Let A be the generator of a one-parameter C_0 -group U. Then U is unitary if and only if A is skew-adjoint.

Problem How to recognize that a skew-adjoint operator is the generator of a Koopman group?

Definition Let A be an operator in a function space E and let $\mathcal{D} \subset D(A)$ be an algebra. Then A is called a derivation on \mathcal{D} if

$$A(f g) = (Af) g + f (Ag) \text{ for all } f, g \in \mathcal{D}.$$

Sufficient condition

```
Theorem (Gallavotti-Pulvirenti, 1976)

Let (X, \mathcal{B}, \mu) be a standard Borel probability space.

Let U be a unitary one-parameter C_0-group on L_2(X) with generator A.

Let \mathcal{D} \subset D(A) \cap L_{\infty}(X).

Suppose that

\mathcal{D} is a core for A,

\mathbb{1} \in \mathcal{D},

\mathcal{D} is an algebra,

\mathcal{D} is self-adjoint (that is if f \in \mathcal{D} then \overline{f} \in \mathcal{D}),
```

• A is a derivation on $\mathcal D$ and

• $\overline{Af} = A\overline{f}$ for all $f \in \mathcal{D}$.

Then for all $t \in \mathbb{R}$ there exists an a.e. invertible measurable and measure preserving map $T_t \colon X \to X$ such that

$$U_t f = f \circ T_t$$
 for all $f \in L_2(X)$.

Characterisation

Theorem (tE-Lemańczyk)

Let (X, \mathcal{B}, μ) be a standard Borel probability space. Let U be a unitary one-parameter C_0 -group on $L_2(X)$ with generator A. Then the following are equivalent.

I. For all $t\in\mathbb{R}$ there exists an a.e. invertible measurable and measure preserving map $T_t\colon X\to X$ such that

 $U_t f = f \circ T_t$ for all $f \in L_2(X)$.

- II. The space $L_{\infty}(X)$ is invariant under U,
 - \blacksquare the space $D(A)\cap L_\infty(X)$ is an algebra and
 - A is a derivation on $D(A) \cap L_{\infty}(X)$.

Unitary is not needed.

Theorem Let (X, \mathcal{B}, μ) be a standard Borel probability space. Let U be a one-parameter C_0 -group on $L_2(X)$ with generator A. Then the following are equivalent.

I. For all $t \in \mathbb{R}$ there exists a measurable map $T_t \colon X \to X$ such that

$$U_t f = f \circ T_t$$
 for all $f \in L_2(X)$.

II. The space $L_{\infty}(X)$ is invariant under U, the space $D(A) \cap L_{\infty}(X)$ is an algebra and

• A is a derivation on $D(A) \cap L_{\infty}(X)$.

There is also an extension for σ -finite measure spaces.

Weighted non-singular C_0 -groups

Theorem Let (X, \mathcal{B}, μ) be a standard Borel probability space. Let U be a unitary C_0 -group on $L_2(X)$ with generator A. Suppose

- U preserves $L_{\infty}(X)$,
- $1 \in D(A)$ and
- $A1 \in L_{\infty}(X).$

Then the following are equivalent.

I. For all $t \in \mathbb{R}$ there exist an a.e. invertible, measurable and measure-preserving map $T_t \colon X \to X$ and a function $\psi_t \colon X \to \mathbb{C}$ such that

$$U_t f = \psi_t \cdot (f \circ T_t) \quad \text{for all } f \in L_2(X).$$

II. For all $t \in \mathbb{R}$ one has $|U_t \mathbb{1}| = 1$ a.e., $D(A) \cap L_{\infty}(X)$ is an algebra and $A - (A\mathbb{1})I$ is a derivation on $D(A) \cap L_{\infty}(X)$.

Weighted non-singular C_0 -groups

Unitary is not needed.

Theorem Let (X, \mathcal{B}, μ) be a standard Borel probability space. Let U be a C_0 -group on $L_2(X)$ with generator A. Suppose

- U preserves $L_{\infty}(X)$,
- $1 \in D(A)$ and
- $A1 \in L_{\infty}(X).$

Then the following are equivalent.

I. For all $t \in \mathbb{R}$ there exist an a.e. invertible, measurable map $T_t \colon X \to X$ and a function $\psi_t \colon X \to \mathbb{C}$ such that

$$U_t f = \psi_t \cdot (f \circ T_t) \quad \text{for all } f \in L_2(X).$$

II.
$$D(A) \cap L_{\infty}(X)$$
 is an algebra and
 $A - (A\mathbb{1})I$ is a derivation on $D(A) \cap L_{\infty}(X)$.

Set-up

Let (X, \mathcal{B}, μ) be a standard Borel probability space. For all $t \in \mathbb{R}$ let $T_t \colon X \to X$ be a measurable map. Define

$$V_t f := f \circ T_t$$
 for all $t \in \mathbb{R}$.

Assume $V = (V_t)_{t \in \mathbb{R}}$ is a C_0 -group on $L_2(X)$. A cocycle (over V) is a map $\psi \colon \mathbb{R} \to L_\infty(X)$ such that

$$\psi_{t+t'} = \psi_t \cdot (\psi_{t'} \circ T_t)$$

for all $t, t' \in \mathbb{R}$, where $\psi_t = \psi(t)$. Define

$$U_t = \psi_t V_t$$
 i.e. $U_t f = \psi_t \cdot (f \circ T_t)$

for all $t \in \mathbb{R}$ and $f \in L_2$. Clearly $U = (U_t)_{t \in \mathbb{R}}$ is a one-parameter group.

C_0 -cocycle

Theorem

The following are equivalent.

- I. U is a C_0 -group.
- II. $\lim_{t\to 0} \|\psi_t \mathbb{1}\|_2 = 0.$

The main difficulty in the proof of $II{\Rightarrow}I$ is to show that

 $\sup_{t\in(0,1)}\|\psi_t\|_{\infty}<\infty.$

Example

Let $\zeta \in L_{\infty}(X)$. Define $\psi \colon \mathbb{R} \to L_{\infty}(X)$ by

$$\psi_t := e^{\int_0^t \zeta \circ T_s \, ds}$$

Then ψ is a cocycle and U is a C₀-group.

Consistent semigroups

Let (X, \mathcal{B}, μ) be a measure space. Let $p, q \in [1, \infty]$, let U be a one-parameter (semi)group on $L_p(X)$ and let V be a one-parameter (semi)group on $L_q(X)$.

We say that U and V are consistent if

$$U_t f = V_t f$$

for all $t \in (0,1)$ and $f \in L_p(X) \cap L_q(X)$.

Problem Let $p \in [1, \infty)$. Let S be a C_0 -(semi)group on $L_2(X)$ which extends consistently to a (semi)group V on $L_p(X)$. If V then also a C_0 -(semi)group?

Solution: Suppose in addition that $\sup_{t \in (0,1)} \|V_t\|_{p \to p} < \infty$. Then yes if p > 1. There are a few sufficient conditions if p = 1.

Consistent semigroups

Theorem (tE–Lemańczyk)

Let (X, \mathcal{B}, μ) be a finite measure space.

Let S be a C_0 -group on $L_2(X)$.

Then the following are equivalent.

- I. The group S extends consistently to a C_0 -group on $L_1(X)$.
- II. The space $L_{\infty}(X)$ is invariant under S^* . (Thus $S_t^*(L_{\infty}(X)) \subset L_{\infty}(X)$ for all $t \in \mathbb{R}$.)

If the (equivalent) conditions are valid, then there exist $M\geq 1$ and $\omega\geq 0$ such that

$$||S_t^*f||_{\infty} \le M e^{\omega|t|} ||f||_{\infty}$$

for all $t \in \mathbb{R}$ and $f \in L_{\infty}(X)$.

 $\text{Closed graph theorem: } \forall_{t \in \mathbb{R}} \exists_{c > 0} \forall_{f \in L_{\infty}} \| S_t^* f \|_{\infty} \leq c \, \|f\|_{\infty}.$

Hence there are group \widehat{S} on L_1 consistent with Sgroup \widetilde{S} on L_{∞} consistent with S^* . Moreover, $\widetilde{S}_t = (\widehat{S}_t)^*$ for all $t \in \mathbb{R}$.

Main difficulty: is $\{\widetilde{S}_t : t \in [2,3]\}$ bounded in $\mathcal{B}(L_{\infty})$? Claim: $\{\|\widetilde{S}_t f\|_{\infty} : t \in [2,3]\}$ is bounded for all $f \in L_{\infty}$.

For the proof of the claim use arguments as in [ABHN] Lemma 3.16.4.

Recall \widetilde{S} is group on L_{∞} which is consistent with S^* .

Fix $f \in L_{\infty}$. If $t \in \mathbb{R}$ then
$$\begin{split} \|\widetilde{S}_t f\|_{\infty} &= \sup\{|\langle \widetilde{S}_t f, g\rangle| : g \in L_1 \text{ and } \|g\|_1 \leq 1\} \\ &= \sup\{|\langle \widetilde{S}_t f, g\rangle| : g \in L_2 \text{ and } \|g\|_1 \leq 1\} \\ &= \sup\{|(f, S_t g)| : g \in L_2 \text{ and } \|g\|_1 \leq 1\}. \end{split}$$

For each $g \in L_2$ the map $t \mapsto |(f, S_t g)|$ is continuous by the strong continuity of S on L_2 .

So $t \mapsto \|\widetilde{S}_t f\|_{\infty}$ is lower semicontinuous, hence measurable function on \mathbb{R} .

Recall \widetilde{S} is group on L_{∞} which is consistent with S^* .

If $f \in L_{\infty}$, then $t \mapsto \|\widetilde{S}_t f\|_{\infty}$ is a measurable function on \mathbb{R} .

Fix
$$f \in L_{\infty}$$
.
Suppose that $\{\|\widetilde{S}_t f\|_{\infty} : t \in [2,3]\}$ is not bounded.
For all $n \in \mathbb{N}$ choose $t_n \in [2,3]$ with $\|\widetilde{S}_{t_n} f\|_{\infty} \ge n$.
Wlog: $t_n \to t_0 \in [2,3]$.
Since $t \mapsto \|\widetilde{S}_t f\|_{\infty}$ is measurable, there are $M > 0$ and a measurable set $F \subset [0, t_0]$ such that $\lambda(F) > 1$ and $\|\widetilde{S}_t f\|_{\infty} \le M$ for all $t \in F$.
Let $n \in \mathbb{N}$. Then

$$n \le \|\widetilde{S}_{t_n}f\|_{\infty} \le \|\widetilde{S}_{t_n-t}\| \|\widetilde{S}_tf\|_{\infty} \le M \|\widetilde{S}_{t_n-t}\|$$

for all $t \in F$. So $\|\widetilde{S}_s\| \ge M^{-1} n$ for all $s \in E_n$, where $E_n = \{t_n - t : t \in F \cap [0, t_n]\}.$

Recall $\|\widetilde{S}_s\| \ge M^{-1} n$ for all $s \in E_n$, where $E_n = \{t_n - t : t \in F \cap [0, t_n]\}$. Also $t_n \to t_0 \in [2, 3]$. Measurable $F \subset [0, t_0]$ such that $\lambda(F) > 1$ and $\|\widetilde{S}_t f\|_{\infty} \le M$ for all $t \in F$.

Note that E_n is measurable and $\lambda(E_n) \ge 1$ if $|t_n - t_0| < \lambda(F) - 1$. Let $E = \limsup_{n \to \infty} E_n = \bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} E_n$. Then E is measurable and $\lambda(E) \ge 1$. In particular, $E \ne \emptyset$. Moreover, $\|\widetilde{S}_s\| = \infty$ for all $s \in E$. Contradiction!

Uniform boundedness principle: $\{\widetilde{S}_t : t \in [2,3]\}$ is bounded in $\mathcal{B}(L_{\infty})$

Recall group \widehat{S} on L_1 consistent with Sgroup \widetilde{S} on L_{∞} consistent with S^* . $\widetilde{S}_t = (\widehat{S}_t)^*$ for all $t \in \mathbb{R}$.

Conclusion: $\{\widehat{S}_t : t \in [2,3]\}$ is bounded in $\mathcal{B}(L_1)$. Group property: $\{\widehat{S}_t : t \in [-1,1]\}$ is also bounded in $\mathcal{B}(L_1)$. Let $c = \sup\{\|\widehat{S}_t\| : t \in [-1,1]\} < \infty$. Let $g \in L_\infty$. Then

$$\lim_{t \to 0} \langle g, \widehat{S}_t f \rangle = \lim_{t \to 0} (g, S_t f) = (g, f) = \langle g, f \rangle \quad \text{for all } f \in L_2.$$

Since L_2 is dense in L_1 and $c < \infty$ also

$$\lim_{t \to 0} \langle g, \widehat{S}_t f \rangle = \langle g, f \rangle \quad \text{for all } f \in L_1.$$

So \widehat{S} is weakly continuous and hence \widehat{S} is a $C_0\text{-}\mathsf{group}.$

A. F. M. ter Elst and M. Lemańczyk, On one-parameter Koopman groups. *ETDS* (2015). In press.