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Background

Koopman operators

Let (X,B, µ) be a standard Borel probability space.
Let T : X → X be an (a.e.) invertible, measurable and measure-preserving
map.
Define UT : L2(X)→ L2(X) by

UT f := f ◦ T for all f ∈ L2(X).

Name: Koopman operator. Clearly UT is unitary.

Problem How to recognize that a unitary operator is a Koopman operator?
Or unitarily equivalent to a Koopman operator?

Theorem A unitary operator U on L2(X) is a Koopman operator if and
only if

U(f g) = U(f)U(g)

for all f, g ∈ L∞(X).
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Background

Koopman group

Definition A unitary one-parameter C0-group (Ut)t∈R is called a
Koopman group if for all t ∈ R there exists a measurable Tt : X → X such
that

Utf = f ◦ Tt for all f ∈ L2(X).

Clearly: if (Ut)t∈R is a Koopman group, then

UtL∞(X) ⊂ L∞(X)

for all t ∈ R.

Theorem (Stone) Let A be the generator of a one-parameter C0-group U .
Then U is unitary if and only if A is skew-adjoint.

Problem How to recognize that a skew-adjoint operator is the generator of
a Koopman group?
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Derivations

Derivations

Definition Let A be an operator in a function space E and let D ⊂ D(A)
be an algebra.
Then A is called a derivation on D if

A(f g) = (Af) g + f (Ag) for all f, g ∈ D.

Tom ter Elst (University of Auckland) One-parameter Koopman groups 1-10-2015 5 / total



Derivations

Sufficient condition

Theorem (Gallavotti–Pulvirenti, 1976)
Let (X,B, µ) be a standard Borel probability space.
Let U be a unitary one-parameter C0-group on L2(X) with generator A.
Let D ⊂ D(A) ∩ L∞(X).
Suppose that

D is a core for A,
1 ∈ D,
D is an algebra,
D is self-adjoint (that is if f ∈ D then f ∈ D),
A is a derivation on D and
Af = Af for all f ∈ D.

Then for all t ∈ R there exists an a.e. invertible measurable and measure
preserving map Tt : X → X such that

Utf = f ◦ Tt for all f ∈ L2(X).
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Derivations

Characterisation

Theorem (tE–Lemańczyk)
Let (X,B, µ) be a standard Borel probability space.
Let U be a unitary one-parameter C0-group on L2(X) with generator A.
Then the following are equivalent.
I. For all t ∈ R there exists an a.e. invertible measurable and measure

preserving map Tt : X → X such that

Utf = f ◦ Tt for all f ∈ L2(X).

II. The space L∞(X) is invariant under U ,
the space D(A) ∩ L∞(X) is an algebra and
A is a derivation on D(A) ∩ L∞(X).
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Derivations

Extension

Unitary is not needed.

Theorem Let (X,B, µ) be a standard Borel probability space.
Let U be a one-parameter C0-group on L2(X) with generator A.
Then the following are equivalent.
I. For all t ∈ R there exists a measurable map Tt : X → X such that

Utf = f ◦ Tt for all f ∈ L2(X).

II. The space L∞(X) is invariant under U ,
the space D(A) ∩ L∞(X) is an algebra and
A is a derivation on D(A) ∩ L∞(X).

There is also an extension for σ-finite measure spaces.
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Application

Weighted non-singular C0-groups

Theorem Let (X,B, µ) be a standard Borel probability space.
Let U be a unitary C0-group on L2(X) with generator A. Suppose

U preserves L∞(X),
1 ∈ D(A) and
A1 ∈ L∞(X).

Then the following are equivalent.
I. For all t ∈ R there exist an a.e. invertible, measurable and

measure-preserving map Tt : X → X and a function ψt : X → C such
that

Utf = ψt · (f ◦ Tt) for all f ∈ L2(X).

II. For all t ∈ R one has |Ut1| = 1 a.e.,
D(A) ∩ L∞(X) is an algebra and
A− (A1)I is a derivation on D(A) ∩ L∞(X).
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Application

Weighted non-singular C0-groups

Unitary is not needed.

Theorem Let (X,B, µ) be a standard Borel probability space.
Let U be a C0-group on L2(X) with generator A. Suppose

U preserves L∞(X),
1 ∈ D(A) and
A1 ∈ L∞(X).

Then the following are equivalent.
I. For all t ∈ R there exist an a.e. invertible, measurable map
Tt : X → X and a function ψt : X → C such that

Utf = ψt · (f ◦ Tt) for all f ∈ L2(X).

II. D(A) ∩ L∞(X) is an algebra and
A− (A1)I is a derivation on D(A) ∩ L∞(X).
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Cocycles

Set-up

Let (X,B, µ) be a standard Borel probability space.
For all t ∈ R let Tt : X → X be a measurable map. Define

Vtf := f ◦ Tt for all t ∈ R.

Assume V = (Vt)t∈R is a C0-group on L2(X).
A cocycle (over V ) is a map ψ : R→ L∞(X) such that

ψt+t′ = ψt · (ψt′ ◦ Tt)

for all t, t′ ∈ R, where ψt = ψ(t). Define

Ut = ψt Vt i.e. Utf = ψt · (f ◦ Tt)

for all t ∈ R and f ∈ L2.
Clearly U = (Ut)t∈R is a one-parameter group.
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Cocycles

C0-cocycle

Theorem
The following are equivalent.
I. U is a C0-group.
II. limt→0 ‖ψt − 1‖2 = 0.

The main difficulty in the proof of II⇒I is to show that

sup
t∈(0,1)

‖ψt‖∞ <∞.

Example
Let ζ ∈ L∞(X). Define ψ : R→ L∞(X) by

ψt := e
∫ t
0 ζ◦Ts ds.

Then ψ is a cocycle and U is a C0-group.
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Invariance

Consistent semigroups

Let (X,B, µ) be a measure space. Let p, q ∈ [1,∞], let U be a
one-parameter (semi)group on Lp(X) and let V be a one-parameter
(semi)group on Lq(X).
We say that U and V are consistent if

Utf = Vtf

for all t ∈ (0, 1) and f ∈ Lp(X) ∩ Lq(X).

Problem Let p ∈ [1,∞). Let S be a C0-(semi)group on L2(X) which
extends consitently to a (semi)group V on Lp(X).
If V then also a C0-(semi)group?

Solution: Suppose in addition that sup
t∈(0,1)

‖Vt‖p→p <∞.

Then yes if p > 1.
There are a few sufficient conditions if p = 1.
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Invariance

Consistent semigroups

Theorem (tE–Lemańczyk)
Let (X,B, µ) be a finite measure space.
Let S be a C0-group on L2(X).
Then the following are equivalent.
I. The group S extends consistently to a C0-group on L1(X).
II. The space L∞(X) is invariant under S∗.

(Thus S∗t (L∞(X)) ⊂ L∞(X) for all t ∈ R.)

If the (equivalent) conditions are valid, then there exist M ≥ 1 and ω ≥ 0
such that

‖S∗t f‖∞ ≤M eω|t| ‖f‖∞
for all t ∈ R and f ∈ L∞(X).
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Invariance

Proof of II⇒I

Closed graph theorem: ∀t∈R∃c>0∀f∈L∞ ‖S∗t f‖∞ ≤ c ‖f‖∞.

Hence there are group Ŝ on L1 consistent with S
group S̃ on L∞ consistent with S∗.

Moreover, S̃t = (Ŝt)
∗ for all t ∈ R.

Main difficulty: is {S̃t : t ∈ [2, 3]} bounded in B(L∞)?
Claim: {‖S̃tf‖∞ : t ∈ [2, 3]} is bounded for all f ∈ L∞.

For the proof of the claim use arguments as in [ABHN] Lemma 3.16.4.
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Invariance

Proof of II⇒I

Recall S̃ is group on L∞ which is consistent with S∗.

Fix f ∈ L∞. If t ∈ R then

‖S̃tf‖∞ = sup{|〈S̃tf, g〉| : g ∈ L1 and ‖g‖1 ≤ 1}

= sup{|〈S̃tf, g〉| : g ∈ L2 and ‖g‖1 ≤ 1}

= sup{|(f, Stg)| : g ∈ L2 and ‖g‖1 ≤ 1}.

For each g ∈ L2 the map t 7→ |(f, Stg)| is continuous by the strong
continuity of S on L2.

So t 7→ ‖S̃tf‖∞ is lower semicontinuous, hence measurable function on R.
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Invariance

Proof of II⇒I

Recall S̃ is group on L∞ which is consistent with S∗.

If f ∈ L∞, then t 7→ ‖S̃tf‖∞ is a measurable function on R.

Fix f ∈ L∞.
Suppose that {‖S̃tf‖∞ : t ∈ [2, 3]} is not bounded.
For all n ∈ N choose tn ∈ [2, 3] with ‖S̃tnf‖∞ ≥ n.
Wlog: tn → t0 ∈ [2, 3].
Since t 7→ ‖S̃tf‖∞ is measurable, there are M > 0 and a measurable set
F ⊂ [0, t0] such that λ(F ) > 1 and ‖S̃tf‖∞ ≤M for all t ∈ F .
Let n ∈ N. Then

n ≤ ‖S̃tnf‖∞ ≤ ‖S̃tn−t‖ ‖S̃tf‖∞ ≤M ‖S̃tn−t‖
for all t ∈ F .
So ‖S̃s‖ ≥M−1 n for all s ∈ En, where

En = {tn − t : t ∈ F ∩ [0, tn]}.
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Invariance

Proof of II⇒I

Recall ‖S̃s‖ ≥M−1 n for all s ∈ En, where En = {tn − t : t ∈ F ∩ [0, tn]}.
Also tn → t0 ∈ [2, 3].
Measurable F ⊂ [0, t0] such that λ(F ) > 1 and ‖S̃tf‖∞ ≤M for all t ∈ F .

Note that En is measurable and λ(En) ≥ 1 if |tn − t0| < λ(F )− 1.

Let E = lim sup
n→∞

En =

∞⋂
m=1

∞⋃
n=m

En.

Then E is measurable and λ(E) ≥ 1.
In particular, E 6= ∅.
Moreover, ‖S̃s‖ =∞ for all s ∈ E. Contradiction!

Uniform boundedness principle: {S̃t : t ∈ [2, 3]} is bounded in B(L∞)
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Invariance

Proof of II⇒I

Recall group Ŝ on L1 consistent with S
group S̃ on L∞ consistent with S∗.

S̃t = (Ŝt)
∗ for all t ∈ R.

Conclusion: {Ŝt : t ∈ [2, 3]} is bounded in B(L1).
Group property: {Ŝt : t ∈ [−1, 1]} is also bounded in B(L1).
Let c = sup{‖Ŝt‖ : t ∈ [−1, 1]} <∞.
Let g ∈ L∞. Then

lim
t→0
〈g, Ŝtf〉 = lim

t→0
(g, Stf) = (g, f) = 〈g, f〉 for all f ∈ L2.

Since L2 is dense in L1 and c <∞ also

lim
t→0
〈g, Ŝtf〉 = 〈g, f〉 for all f ∈ L1.

So Ŝ is weakly continuous and hence Ŝ is a C0-group.
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Invariance
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