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Example 1: The ‘robot rendezvous problem’

Consider countably many robots at positions xk(t) ∈ C, where
t ≥ 0 and k ∈ Z. Aim for mutual ‘rendezvous’ by setting
ẋk(t) = uk(t), where

uk(t) = xk−1(t)− xk(t).

Cauchy problem: {
ẋ(t) = Ax(t), t ≥ 0,

x(0) = x0 ∈ X,
(CP-Rob)

where x(t) = (xk(t))k∈Z, A = S − I for S = right-shift on
X = `p(Z), 1 ≤ p ≤ ∞.

Theorem (Feintuch, Francis ’12)

For p =∞ the solution x(t), t ≥ 0, of (CP-Rob) need not
converge to a limit as t→∞, but we always have ẋ(t)→ 0.
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Example 2: The platoon system

Consider a more realistic model in which vehicle k ∈ Z at time
t ≥ 0 has position sk(t), velocity vk(t) and acceleration ak(t).

Aim to steer vehicle k towards target separation qk from vehicle
k − 1 and have all vehicles moving at target velocity v, by
controlling its acceleration: ȧk(t) = uk(t).

The state vector of vehicle k is

xk(t) =



yk(t)
wk(t)
ak(t)


 =



qk − dk(t)
vk(t)− v
ak(t)


 ,

where dk(t) = sk−1(t)− sk(t).
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A picture

a stability approach for strings of infinite length, and finally
a performance-oriented frequency-domain approach.

The formal stability-like approach is described in, e.g., [9],
[11]. As opposed to system stability, which is essentially
concerned with the evolution of system states over time,
string stability focusses on the propagation of states over
subsystems. Recently, new results appeared [12], regarding
a one-vehicle look-ahead control architecture in a homo-
geneous string. These approaches employ common notions
such as Lyapunov stability, input-output stability and input-
to-state stability to devise a definition for string stability.
They provide little support for controller synthesis, however.

Within the framework of string stability for infinite-length
strings of identical interconnected subsystems, the model
of such a system is formulated in the state space and
subsequently transformed using the bilateral Z-transform
[13], [14]. The Z-transform is executed over the vehicle
index instead of over time, resulting in a model formulated
in the “discrete frequency” domain, related to the vehicle
index, as well as in the time domain. String stability can
then be assessed by inspecting the eigenvalues of the state
matrix. This method, although rather elegant, is however only
applicable to linear, infinite-length strings.

Finally, a performance-oriented frequency-domain ap-
proach for string stability is frequently adopted since this
appears to directly offer tools for controller synthesis [5],
[7], [8], [10], [15]. Moreover, the fact that string stability in
literature is commonly used as a performance objective rather
than as a stability criterion, suggests an interpretation of
string stability as such, despite its name. In the performance-
oriented approach, string stability is characterized by the
amplification in upstream direction of either distance error,
velocity, or acceleration. This leads to the following defini-
tion, (implicitly) used in the above literature references.

Definition 1 (Vehicle String Stability): Consider a string
of m ∈ N interconnected vehicles. This system is string-
stable if and only if

‖zi(t)‖Lp ≤ ‖zi−1(t)‖Lp , ∀ t ≥ 0, 2 ≤ i ≤ m,

where zi(t) can either be the distance error ei(t), the velocity
vi(t) or the acceleration ai(t) of vehicle i; z1(t) ∈ Lp is a
given input signal, and zi(0) = 0 for 2 ≤ i ≤ m.

‖ · ‖Lp denotes the signal p-norm, whereas the vehicles in
the string are enumerated i = 1, . . . , m, with i = 1 indicating
the lead vehicle. Definition 1 thus states that ‖zi(t)‖Lp must
decrease in upstream direction. Note that in literature, the
choice for the scalar signal zi(t), i.e., either distance error,
velocity, or acceleration, seems rather arbitrary.

The above string stability definition can directly be used
for string stability analysis and has a clear physical meaning,
as illustrated in the next section. It seems therefore well
motivated to adopt the performance-oriented approach when
designing CACC systems.

III. CONTROL DESIGN

An elegant method to arrive at a suitable controller for
CACC is based on formulation of the error dynamics, as

di di–1di+1

vi+1

i+1

vi vi–1

wireless
communication

radar

i–1i

Fig. 2. CACC-equipped string of vehicles.

shown below. Having designed the controller, the string
stability properties of the resulting closed-loop system are
analyzed, using a condition that directly follows from Defi-
nition 1.

A. Error Dynamics

Consider a string of m vehicles, schematically depicted
in Fig. 2, with di being the distance between vehicle i and
its preceding vehicle i − 1, and vi the velocity of vehicle i.
The main objective of each vehicle is to follow its preceding
vehicle at a desired distance dr,i. Here, a constant time-
headway spacing policy is adopted, formulated as

dr,i(t) = ri + hvi(t), 2 ≤ i ≤ m, (1)

where h is the so-called time headway, and ri is the standstill
distance. This spacing policy is known to improve string sta-
bility [5], [8], [10], [12]. A homogeneous string is assumed,
which is why the time headway h is taken independently of
i. The spacing error ei(t) is thus defined as

ei(t) = di(t) − dr,i(t)

= (si−1(t) − si(t) − Li) − (ri + hvi(t)) (2)

with si(t) the position of vehicle i and Li its length.

As a basis for control design, the following vehicle model
is adopted:




ḋi

v̇i

ȧi


 =




vi−1 − vi

ai

− 1
τ ai + 1

τ ui


 , 2 ≤ i ≤ m, (3)

where ai is the acceleration of vehicle i, ui the external
input, to be interpreted as desired acceleration, and τ a time
constant representing engine dynamics. This model is in fact
obtained by formulating a more detailed model and then
applying a pre-compensator, designed by means of input-
output linearization by state feedback [7], [15]. Also note
that the time constant τ is assumed to be identical for all
vehicles, corresponding to the above mentioned homogeneity
assumption. With different types of vehicles in the string,
as suggested by Fig. 2, homogeneity can be obtained by
adequately designed pre-compensators so as to arrive at the
vehicle behavior described by (3).

The control law can now be designed by formulating the
error dynamics. Define to this end the error states




e1,i

e2,i

e3,i


 =




ei

ėi

ëi


 , 2 ≤ i ≤ m. (4)

!"#

Taken from Ploeg, van de Wouw, Nijmeijer ’14
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Equations of motion

We choose the ‘state feedback control’

uk(t) = −α0yk(t)− α1wk(t)− α2ak(t).

Then

ẋk(t) =



wk(t)− wk−1(t)

ak(t)
uk(t)


 = A0xk(t) +A1xk−1(t),

where

A0 =




0 1 0
0 0 1
−α0 −α1 −α2


 A1 =




0 −1 0
0 0 0
0 0 0


 .
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The Cauchy problem

Letting x(t) = (xk(t))k∈Z we write this as

{
ẋ(t) = Ax(t), t ≥ 0,

x(0) = x0 ∈ X,
(CP-Plat)

where X = `p(Z;C3), 1 ≤ p ≤ ∞, and

A =




. . .

. . . A0

A1 A0

A1 A0

. . .
. . .



.
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Asymptotics of the platoon system

Theorem (Zwart?)

For p = 2 and suitable choices of α0, α1, α2 ∈ C we get x(t)→ 0
as t→∞ for all x0 ∈ X.

Questions

Do solutions converge for p 6= 2?

If not for all x0 then for which ones?

When we have convergence, is there a rate?

Is it still true that ẋ(t)→ 0 as t→∞?

If so, how fast?

David Seifert University of Oxford

Asymptotics of infinite systems of ODEs



Motivating examples General results Examples revisited

Asymptotics of the platoon system

Theorem (Zwart?)

For p = 2 and suitable choices of α0, α1, α2 ∈ C we get x(t)→ 0
as t→∞ for all x0 ∈ X.

Questions

Do solutions converge for p 6= 2?

If not for all x0 then for which ones?

When we have convergence, is there a rate?

Is it still true that ẋ(t)→ 0 as t→∞?
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The general Cauchy problem

We consider the more general problem
{
ẋ(t) = Ax(t), t ≥ 0,

x(0) = x0 ∈ X,
(CP)

where X = `p(Z;Cm) with 1 ≤ p ≤ ∞, m ∈ N and where

A =




. . .

. . . A0

A1 A0

A1 A0

. . .
. . .




for suitable matrices A0, A1 ∈ Cm×m.
David Seifert University of Oxford
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The semigroup approach

Observe that the solution of (CP) is given, for t ≥ 0, by

x(t) = T (t)x0,

where

T (t) = exp(tA) =

∞∑

k=0

tk

k!
Ak.

In particular,
ẋ(t) = AT (t)x0 = T (t)Ax0.

Objective

To understand the asymptotic behaviour of solutions to (CP) by
studying the semigroup T and its generator A.

David Seifert University of Oxford
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An abstract result

Notation: For λ 6∈ σ(A), we let R(λ,A) = (λ−A)−1.

Theorem (Batty, Chill, Tomilov ’14; Chill, S ’15)

Let T be a bounded semigroup whose generator A ∈ B(X)
satisfies σ(A) ∩ iR = {0}. Suppose further that

‖R(is, A)‖ = O
(
|s|−α

)
, s→ 0,

for some α ≥ 1. Then

‖AT (t)‖ = O

((
log t

t

)1/α)
, t→∞.

If X is a Hilbert space, the logarithmic term can be dropped.

David Seifert University of Oxford

Asymptotics of infinite systems of ODEs



Motivating examples General results Examples revisited

Two assumptions

Assumption (A1)

We have A1 6= 0.

Assumption (A2)

There exists a function φ such that

A1R(λ,A0)A1 = φ(λ)A1, λ 6∈ σ(A0).

We call φ the characteristic function.

• holds automatically if rankA1 = 1
• φ is rational with poles contained in σ(A0)
• |φ(λ)| → 0 as |λ| → ∞

David Seifert University of Oxford
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The spectrum of A

Theorem (Paunonen, S ’15)

Let 1 ≤ p ≤ ∞ and m ∈ N, and suppose that (A1), (A2) hold. Let

Ωφ =
{
λ ∈ C\σ(A0) : |φ(λ)| = 1

}
.

Then Ωφ = σ(A)\σ(A0) and given λ ∈ Ωφ we have

λ ∈ σp(A) if and only if p =∞,

λ ∈ σr(A) if and only if p = 1 or p =∞.

Also know that
• if p =∞ and λ ∈ Ωφ then dim Ker(λ−A) = rankA1

• points in σ(A0) can lie inside or outside σ(A)

David Seifert University of Oxford
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Growth of the resolvent

Theorem (Paunonen, S ’15)

Let 1 ≤ p ≤ ∞ and m ∈ N, and suppose that (A1), (A2) hold. If
µ ∈ Ωφ then

‖R(λ,A)‖ � 1

|1− |φ(λ)||
as λ→ µ with λ 6∈ σ(A).

Assumption (A3)

We have σ(A0) ⊂ C− = {λ ∈ C : Reλ < 0}.

Assumption (A4)

We have 0 ∈ Ωφ ⊂ C− ∪ {0} and φ′(0) 6= 0.
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A sufficient condition for boundedness

Theorem (Paunonen, S ’15)

Let 1 ≤ p ≤ ∞ and m ∈ N, and suppose that (A1)–(A4) hold. Let
Q = {λ ∈ C : 0 < Reλ ≤ 1, | Imλ| ≤ ‖A‖+ 1}. The semigroup T
generated by A is bounded provided

sup
λ∈Q

sup
k≥0

(Reλ)k+1

k!

∞∑

j=0

|Dkφ(λ)j | <∞. (∗)

Assumption (A5)

The function φ satisfies (∗).
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Towards an asymptotic result

Would like to characterise the set

C =
{
x0 ∈ X : lim

t→∞
x(t) exists

}
,

where x(t), t ≥ 0, is the solution of (CP) with initial data x0.

Also hope to describe the limit when x0 ∈ C, to show that
ẋ(t)→ 0 for all x0 ∈ X, and obtain rates where possible.

Note: From (A1)–(A4) we have σ(A) ∩ iR = {0} and

‖R(is, A)‖ � |s|−n, s→ 0,

for some n = nφ ∈ 2N.
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Convergence of solutions

Let 1 ≤ p ≤ ∞, m ∈ N and suppose that (A1)–(A5) hold.

Notation: Let M ∈ B(X) be given by M(xk) = (A1A
−1
0 xk).

Theorem (Paunonen, S ’15)

Given x0 ∈ X we have x0 ∈ C if and only if

∥∥∥∥
1

n

n∑

k=1

φ(0)kSkMx0 − y
∥∥∥∥→ 0, n→∞, (♦)

for some y = (φ(0)ky0) with y0 ∈ RanA1.

Moreover, there exists a
matrix L such that if (♦) holds, then for z = (φ(0)kLy0) we have

‖x(t)− z‖ → 0, t→∞.

In particular, C = X if and only if 1 < p <∞.

David Seifert University of Oxford

Asymptotics of infinite systems of ODEs



Motivating examples General results Examples revisited

Convergence of solutions

Let 1 ≤ p ≤ ∞, m ∈ N and suppose that (A1)–(A5) hold.

Notation: Let M ∈ B(X) be given by M(xk) = (A1A
−1
0 xk).

Theorem (Paunonen, S ’15)

Given x0 ∈ X we have x0 ∈ C if and only if

∥∥∥∥
1

n

n∑

k=1

φ(0)kSkMx0 − y
∥∥∥∥→ 0, n→∞, (♦)

for some y = (φ(0)ky0) with y0 ∈ RanA1. Moreover, there exists a
matrix L such that if (♦) holds, then for z = (φ(0)kLy0) we have

‖x(t)− z‖ → 0, t→∞.

In particular, C = X if and only if 1 < p <∞.
David Seifert University of Oxford

Asymptotics of infinite systems of ODEs



Motivating examples General results Examples revisited

Rates of convergence

Theorem (Paunonen, S ’15)

If x0 ∈ C and the convergence in (♦) is like O(n−1) as n→∞,
then

‖x(t)− z‖ = O

((
log t

t

)1/nφ
)
, t→∞.

Moreover, for all x0 ∈ X we have

‖ẋ(t)‖ = O

((
log t

t

)1/nφ
)
, t→∞.

In both cases the logarithm can be dropped if p = 2.
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The robot rendezvous problem

Here m = 1, A0 = −1 and A1 = 1. So (A1)–(A5) hold with

φ(λ) =
1

λ+ 1
and nφ = 2.

Corollary (Paunonen, S ’15)

Let 1 ≤ p ≤ ∞. Given x0 ∈ X we have x0 ∈ C if and only if

∥∥∥∥
1

n

n∑

k=1

Skx0 − y
∥∥∥∥→ 0, n→∞, (])

for some constant sequence y ∈ X. If (]) holds then x(t)→ y.

In particular, C = X if and only if 1 < p <∞.
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Rates of convergence

Proposition (Paunonen, S ’15)

Let 1 ≤ p ≤ ∞. If x0 ∈ C and

∥∥∥∥
1

n

n∑

k=1

Skx0 − y
∥∥∥∥ = O(n−1), n→∞,

then
‖x(t)− y‖ = O(t−1/2), t→∞.

Moreover, for all x0 ∈ X we have

‖ẋ(t)‖ = O(t−1/2), t→∞.
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The platoon model

Now m = 3 and

A0 =




0 1 0
0 0 1
−α0 −α1 −α2


 A1 =




0 −1 0
0 0 0
0 0 0


 .

So (A1), (A2) hold with

φ(λ) =
α0

p(λ)
,

where
p(λ) = λ3 + α2λ

2 + α1λ+ α0

is the characteristic polynomial of A0.
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Placing the poles

Possible choices of σ(A0) and the resulting Ωφ:

Choose α0 = 1, α1 = α2 = 3, so that p(λ) = (λ+ 1)3.

Then (A1)–(A5) hold and nφ = 2.
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Convergence of solutions

Corollary (Paunonen, S ’15)

Let 1 ≤ p ≤ ∞ and let α0, α1, α2 be as above. Given x0 ∈ X we
have x0 ∈ C if and only if there exists y ∈ `p(Z) such that

∥∥∥∥
1

n

n∑

k=1

Sky0 − y
∥∥∥∥
`p(Z)
→ 0, n→∞, (†)

where y0 is the vector of initial deviations.

If (†) holds then
y = (. . . , c, c, c, . . . ) for some c ∈ C and x(t)→ z where

z =


. . . ,




c
−c/3

0


 ,




c
−c/3

0


 ,




c
−c/3

0


 , . . .


 .

In particular, C = X if and only if 1 < p <∞.
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∥∥∥∥
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n

n∑

k=1

Sky0 − y
∥∥∥∥
`p(Z)
→ 0, n→∞, (†)

where y0 is the vector of initial deviations. If (†) holds then
y = (. . . , c, c, c, . . . ) for some c ∈ C and x(t)→ z where

z =


. . . ,




c
−c/3

0


 ,




c
−c/3

0


 ,




c
−c/3

0


 , . . .


 .

In particular, C = X if and only if 1 < p <∞.
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Rates of convergence

Corollary (Paunonen, S ’15)

Let 1 ≤ p ≤ ∞ and let α0, α1, α2 be as before. If x0 ∈ C and if
the convergence in (†) is like O(n−1) as n→∞, then

‖x(t)− z‖ = O

((
log t

t

)1/2)
, t→∞.

Moreover, for any x0 ∈ X we have

‖ẋ(t)‖ = O

((
log t

t

)1/2)
, t→∞.

In both cases the logarithm can be dropped if p = 2.
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Thank you.
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Thank you.
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