Automorphism Groups of Minimal Subshifts of low complexity

Samuel Petite with S. Donoso, F. Durand, A. Maass

LAMFA UMR CNRS Université de Picardie Jules Verne, France

October 2, 2015

< □ > < □ > < □ > < □ > < 豆 > < 豆 > < 豆 > ○ Q へ
Automorphism Groups of Minimal Subshifts of Iow complexity

Definition

Let (X, T) be a topological dynamical system, X a topological space. An automorphism $\phi: X \to X$ is an homeomorphism s.t.

 $\phi \circ T = T \circ \phi.$

Aut $(X, T) = \{ \phi \text{ automorphism of } (X, T) \}.$

Automorphism Groups of Minimal Subshifts of low complexity

Definition

Let (X, T) be a topological dynamical system, X a topological space. An automorphism $\phi: X \to X$ is an homeomorphism s.t.

 $\phi \circ T = T \circ \phi.$

 $\operatorname{Aut}(X,T) = \{ \phi \text{ automorphism of } (X,T) \}.$

 $\langle T \rangle \subset Z(\operatorname{Aut}(X,T)) \subset \operatorname{Aut}(X,T)$

Automorphism Groups of Minimal Subshifts of low complexity

Definition

Let (X, T) be a topological dynamical system, X a topological space. An automorphism $\phi: X \to X$ is an homeomorphism s.t.

 $\phi \circ T = T \circ \phi.$

 $\operatorname{Aut}(X,T) = \{ \phi \text{ automorphism of } (X,T) \}.$

$$\langle T \rangle \subset Z(\operatorname{Aut}(X,T)) \subset \operatorname{Aut}(X,T)$$

 \underline{Q} : What can we say on Aut(X, T)?

(本間) (本語) (本語) (語)

Let A be a finite alphabet. $A^{\mathbb{Z}}$ endowed with the product topology. The shift map

$$\begin{aligned} \sigma \colon A^{\mathbb{Z}} &\to A^{\mathbb{Z}} \\ (x_n)_{n \in \mathbb{Z}} &\mapsto (x_{n+1})_{n \in \mathbb{Z}} \end{aligned}$$

For a closed set $X \subset A^{\mathbb{Z}}$, shift invariant ($\sigma(X) = X$), a subshift is the dynamical system $(X, \sigma_{|X})$.

(本間) (本語) (本語)

Let ϕ be an automorphism of (X, σ) There exists a local map $\hat{\phi} \colon A^{2r+1} \to A \text{ s.t.}$

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

Let ϕ be an automorphism of (X, σ) There exists a local map $\hat{\phi}: A^{2r+1} \to A \text{ s.t.}$

Automorphism Groups of Minimal Subshifts of low complexity

<ロト <回 > < 注 > < 注 > … 注

Let ϕ be an automorphism of (X, σ) There exists a local map $\hat{\phi} \colon A^{2r+1} \to A \text{ s.t.}$

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

$$\phi(x) =$$

Automorphism Groups of Minimal Subshifts of low complexity

Let ϕ be an automorphism of (X, σ) There exists a local map $\hat{\phi} \colon A^{2r+1} \to A \text{ s.t.}$

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

(本間) (本語) (本語) (語)

Let ϕ be an automorphism of (X, σ) There exists a local map $\hat{\phi} \colon A^{2r+1} \to A \text{ s.t.}$

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

(本間) (本語) (本語) (語)

Let ϕ be an automorphism of (X, σ) There exists a local map $\hat{\phi} \colon A^{2r+1} \to A \text{ s.t.}$

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

Let ϕ be an automorphism of (X, σ) There exists a local map $\hat{\phi} \colon A^{2r+1} \to A \text{ s.t.}$

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

(本間) (本語) (本語) (語)

Let ϕ be an automorphism of (X, σ) There exists a local map $\hat{\phi} \colon A^{2r+1} \to A \text{ s.t.}$

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

Let ϕ be an automorphism of (X, σ) There exists a local map $\hat{\phi} \colon A^{2r+1} \to A \text{ s.t.}$

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

Let ϕ be an automorphism of (X, σ) There exists a local map $\hat{\phi} \colon A^{2r+1} \to A \text{ s.t.}$

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

Let ϕ be an automorphism of (X, σ) There exists a local map $\hat{\phi} \colon A^{2r+1} \to A \text{ s.t.}$

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

(本間) (本語) (本語) (語)

Let ϕ be an automorphism of (X, σ) There exists a local map $\hat{\phi} \colon A^{2r+1} \to A \text{ s.t.}$

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

(本間) (本語) (本語) (語)

Let ϕ be an automorphism of (X, σ) There exists a local map $\hat{\phi} \colon A^{2r+1} \to A \text{ s.t.}$

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

 $\phi(x) = \dots 0100111.01010000111\dots$

Automorphism Groups of Minimal Subshifts of low complexity

Let ϕ be an automorphism of (X, σ) There exists a local map $\hat{\phi} \colon A^{2r+1} \to A \text{ s.t.}$

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

 $\phi(x) = \dots 0100111.01010000111 \dots = \sigma(x)$

Automorphism Groups of Minimal Subshifts of low complexity

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Let ϕ be an automorphism of (X, σ) There exists a local map $\hat{\phi} \colon A^{2r+1} \to A \text{ s.t.}$

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

Corollary

 $Aut(X, \sigma)$ is countable. $Aut(X, \sigma)$ is a discrete subgroup of Homeo(X) for the uniform convergence topology.

> <ロト 4 団ト 4 団ト 4 ヨト 4 ヨト 差 - 今 Q で Automorphism Groups of Minimal Subshifts of low complexity

(X, σ) is minimal if any orbit is dense in X.

 (X, σ) is minimal if any orbit is dense in X.

The complexity $p_X \colon \mathbb{N} \to \mathbb{N}$, $p_X(n) = \sharp$ words of length n in X.

 (X, σ) is minimal if any orbit is dense in X.

The complexity $p_X \colon \mathbb{N} \to \mathbb{N}$, $p_X(n) = \sharp$ words of length n in X.

Theorem (DDMP)

Let (X, σ) be a minimal subshift. If

$$\liminf_n \frac{p_X(n)}{n} < +\infty,$$

then $Aut(X, \sigma)/\langle \sigma \rangle$ is finite.

Automorphism Groups of Minimal Subshifts of low complexity

Let (X, σ) be a minimal subshift. If

$$\liminf_n \frac{p_X(n)}{n} < +\infty,$$

then $Aut(X, \sigma)/\langle \sigma \rangle$ is finite.

Example.

• Sturmian subshifts: $p_X(n) = n + 1$ for all n.

Let (X, σ) be a minimal subshift. If

$$\liminf_n \frac{p_X(n)}{n} < +\infty,$$

then $Aut(X, \sigma)/\langle \sigma \rangle$ is finite.

Example.

- Sturmian subshifts: $p_X(n) = n + 1$ for all n.
- Primitive substitutive subshifts: minimal subshift (X, σ) with a clopen proper subset U ⊂ X s.t. induced system (U, σ_U) is conjugate to (X, σ).

Let (X, σ) be a minimal subshift. If

$$\liminf_n \frac{p_X(n)}{n} < +\infty,$$

then $Aut(X, \sigma)/\langle \sigma \rangle$ is finite.

Example.

- Sturmian subshifts: $p_X(n) = n + 1$ for all n.
- Primitive substitutive subshifts: minimal subshift (X, σ) with a clopen proper subset U ⊂ X s.t. induced system (U, σ_U) is conjugate to (X, σ).
- Linearly recurrent subshift.

Let (X, σ) be a minimal subshift. If

$$\liminf_n \frac{p_X(n)}{n} < +\infty,$$

then $Aut(X, \sigma)/\langle \sigma \rangle$ is finite.

Example.

- Sturmian subshifts: $p_X(n) = n + 1$ for all n.
- Primitive substitutive subshifts: minimal subshift (X, σ) with a clopen proper subset U ⊂ X s.t. induced system (U, σ_U) is conjugate to (X, σ).
- Linearly recurrent subshift.
- Coding of minimal Interval Exchange Transformations.

Let (X, σ) be a minimal subshift. If

$$\liminf_n \frac{p_X(n)}{n} < +\infty,$$

then $Aut(X, \sigma)/\langle \sigma \rangle$ is finite.

Example. Primitive substitutive subshifts: Generalizes results of V. Salo-I. Törmä. Similar result by V. Cyr-B. Kra

Let (X, σ) be a minimal subshift. If

$$\liminf_n \frac{p_X(n)}{n} < +\infty,$$

then $Aut(X, \sigma)/\langle \sigma \rangle$ is finite.

Example. This includes also

- Subshifts of polynomial complexity of arbitrarily high degree.
- Subshifts with subexponential complexity $p_X(n) \ge g(n)$ i.o. where $\lim_n g(n)/\alpha^n = 0$ for any $\alpha > 1$.

Centralizer group: for a measurable dynamical system (X, \mathcal{B}, μ, T) ,

 $C(T) = \{\phi \colon X \to X; \text{ bi-measurable, } \phi_* \mu = \mu, \phi \circ T = T \circ \phi \}$

Centralizer group: for a measurable dynamical system (X, \mathcal{B}, μ, T) ,

 $C(T) = \{\phi \colon X \to X; \text{ bi-measurable, } \phi_* \mu = \mu, \ \phi \circ T = T \circ \phi \}$

• D. Ornstein (72): mixing rank one system $C(T) = \langle T \rangle$.

Centralizer group: for a measurable dynamical system (X, \mathcal{B}, μ, T) ,

 $C(T) = \{\phi \colon X \to X; \text{ bi-measurable, } \phi_* \mu = \mu, \ \phi \circ T = T \circ \phi \}$

- D. Ornstein (72): mixing rank one system $C(T) = \langle T \rangle$.
- A. Del Junco (78): same is true for the Chacon subshift.

(日)(4月)(4日)(4日)(日)

Centralizer group: for a measurable dynamical system (X, \mathcal{B}, μ, T) ,

 $C(T) = \{\phi \colon X \to X; \text{ bi-measurable, } \phi_* \mu = \mu, \ \phi \circ T = T \circ \phi \}$

- D. Ornstein (72): mixing rank one system $C(T) = \langle T \rangle$.
- A. Del Junco (78): same is true for the Chacon subshift.
- J. King, J.-P. Thouvenot (91): mixing system of finite rank

 $C(T)/\langle T \rangle$ is finite.

For non-weakly mixing system:

• B. Host, F. Parreau (89): for a family of substitutive systems

 $C(\sigma) = \operatorname{Aut}(X, \sigma)$ and $C(\sigma)/\langle \sigma \rangle$ is finite.

For non-weakly mixing system:

• B. Host, F. Parreau (89): for a family of substitutive systems

 $C(\sigma) = \operatorname{Aut}(X, \sigma)$ and $C(\sigma)/\langle \sigma \rangle$ is finite.

 M. Lemańczyk, M. Mentzen (89): any finite group can be realized as C(σ)/⟨σ⟩.

イロト イポト イヨト イヨト 二日

(1日) (日) (日)

Hedlund (69), Boyle, Lind & Rudolph (88): Let (X, σ) be an uncountable SFT. Then $Aut(X, \sigma)$

• Contains the direct sum of every countable collection of finite group.

Hedlund (69), Boyle, Lind & Rudolph (88): Let (X, σ) be an uncountable SFT. Then $Aut(X, \sigma)$

- Contains the direct sum of every countable collection of finite group.
- Contains the free group on a countable number of generators.

Hedlund (69), Boyle, Lind & Rudolph (88): Let (X, σ) be an uncountable SFT. Then $Aut(X, \sigma)$

- Contains the direct sum of every countable collection of finite group.
- Contains the free group on a countable number of generators.

In this case:

 $Aut(X, \sigma)$ is not finitely generated, not amenable.

Zoologie, positive entropy

Hochman (2010): for (X, σ) positive entropy SFT, then $Aut(X, \sigma)$ contains every finite group.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Zoologie, positive entropy

Hochman (2010): for (X, σ) positive entropy SFT, then $Aut(X, \sigma)$ contains every finite group.

Proposition (DDMP)

There exists a minimal positive entropy subshift (X, σ) such that

 $Aut(X,\sigma) = \langle \sigma \rangle.$

Hochman (2010): for (X, σ) positive entropy SFT, then $Aut(X, \sigma)$ contains every finite group.

Proposition (DDMP)

There exists a minimal positive entropy subshift (X, σ) such that

 $Aut(X,\sigma) = \langle \sigma \rangle.$

Notice this example is not weakly-mixing. Given by a Toeplitz sequence: *i.e.* a subshift $\overline{\{\sigma^n(x) : n \in \mathbb{Z}\}}$ s.t. for any neighborhood U of x

 $\{n \in \mathbb{Z} : \sigma^n(x) \in U\}$ contains a subgroup of \mathbb{Z} .

イロト イポト イヨト イヨト 二日

Lemma

Let (X, T) be a minimal aperiodic dynamical system. The action of Aut(X, T) on X

$$Aut(X, T) imes X o X$$

 $(\phi, x) \mapsto \phi(x),$

is free (the stabilizer of any point is trivial).

Lemma

Let (X, T) be a minimal aperiodic dynamical system. The action of Aut(X, T) on X

$$Aut(X, T) imes X o X$$

 $(\phi, x) \mapsto \phi(x),$

is free (the stabilizer of any point is trivial).

Proof. For any automorphism ϕ , the set

$$\{x;\phi(x)=x\}$$

is closed and T invariant.

・ 同 ・ ・ ヨ ・ ・ ヨ ・

Two orbits $\operatorname{Orb}_{\mathcal{T}}^{(1)}$ and $\operatorname{Orb}_{\mathcal{T}}^{(2)}$ are asymptotic, if they contains asymptotic points, *i.e.*: $\exists x \in \operatorname{Orb}_{\mathcal{T}}^{(1)}$, $y \in \operatorname{Orb}_{\mathcal{T}}^{(2)}$ s.t.

$$\lim_{n\to+\infty} \operatorname{dist}(T^n(x),T^n(y))=0.$$

Any infinite subshift admits asymptotic orbits.

(本間) (本語) (本語)

Two orbits $\operatorname{Orb}_{\mathcal{T}}^{(1)}$ and $\operatorname{Orb}_{\mathcal{T}}^{(2)}$ are asymptotic, if they contains asymptotic points, *i.e.*: $\exists x \in \operatorname{Orb}_{\mathcal{T}}^{(1)}$, $y \in \operatorname{Orb}_{\mathcal{T}}^{(2)}$ s.t.

$$\lim_{n\to+\infty}\operatorname{dist}(T^n(x),T^n(y))=0.$$

Any infinite subshift admits asymptotic orbits.

• This defines an equivalence relation.

▲周→ ▲臣→ ▲臣→

Two orbits $\operatorname{Orb}_{\mathcal{T}}^{(1)}$ and $\operatorname{Orb}_{\mathcal{T}}^{(2)}$ are asymptotic, if they contains asymptotic points, *i.e.*: $\exists x \in \operatorname{Orb}_{\mathcal{T}}^{(1)}$, $y \in \operatorname{Orb}_{\mathcal{T}}^{(2)}$ s.t.

$$\lim_{n\to+\infty}\operatorname{dist}(T^n(x),T^n(y))=0.$$

Any infinite subshift admits asymptotic orbits.

- This defines an equivalence relation.
- Any automorphism ϕ maps asymptotic orbits to asymptotic orbits.

Two orbits $\operatorname{Orb}_{\mathcal{T}}^{(1)}$ and $\operatorname{Orb}_{\mathcal{T}}^{(2)}$ are asymptotic, if they contains asymptotic points, *i.e.*: $\exists x \in \operatorname{Orb}_{\mathcal{T}}^{(1)}$, $y \in \operatorname{Orb}_{\mathcal{T}}^{(2)}$ s.t.

$$\lim_{n\to+\infty}\operatorname{dist}(T^n(x),T^n(y))=0.$$

Any infinite subshift admits asymptotic orbits.

- This defines an equivalence relation.
- Any automorphism ϕ maps asymptotic orbits to asymptotic orbits.
- Any automorphism ϕ induces a permutation on the collection of asymptotic class of orbits.

イロト イポト イヨト イヨト 二日

For a minimal t.d.s. (X, T), with two asymptotic orbits, we have

$$\{1\} \longrightarrow \langle T \rangle \longrightarrow Aut(X, T) \stackrel{j}{\longrightarrow} Per \mathcal{O},$$

where :

- O denote the collection of non trivial asymptotic class of orbits.
- Per O denotes the set of permutations on this set.

For a minimal t.d.s. (X, T), with two asymptotic orbits, we have

$$\{1\} \rightarrow \langle T \rangle \rightarrow Aut(X,T) \stackrel{j}{\rightarrow} Per \mathcal{O},$$

where :

- *O* denote the collection of non trivial asymptotic class of orbits.
- Per \mathcal{O} denotes the set of permutations on this set.

 $j(\phi)$ has a fixed point $\Leftrightarrow \phi \in \langle T \rangle$

For a minimal t.d.s. (X, T), with two asymptotic orbits, we have

$$\{1\} \rightarrow \langle T
angle \rightarrow Aut(X,T) \stackrel{j}{\rightarrow} Per \mathcal{O},$$

where :

- O denote the collection of non trivial asymptotic class of orbits.
- Per O denotes the set of permutations on this set.

If $\sharp \mathcal{O} = 1$, then $Aut(X, T) = \langle T \rangle$. e.g. for Sturmian sequences

For a minimal t.d.s. (X, T), with two asymptotic orbits, we have

$$\{1\} \rightarrow \langle T \rangle \rightarrow Aut(X,T) \stackrel{j}{\rightarrow} Per \mathcal{O},$$

where :

- *O* denote the collection of non trivial asymptotic class of orbits.
- Per \mathcal{O} denotes the set of permutations on this set.

If $\sharp \mathcal{O} < +\infty$, then $\sharp Aut(X, T)/\langle T \rangle$ divides $\sharp \mathcal{O}$.

Proposition

Let (X, σ) be a subshift with $\liminf_{n} p_X(n)/n < \infty$. Then there is a finite number of asymptotic pair, i.e.

 $\sharp \mathcal{O} < +\infty.$

Automorphism Groups of Minimal Subshifts of low complexity

イロト イヨト イヨト イヨト 三日

In the same way: $x, y \in X$ are proximal if

$$\liminf_n dist(T^n x, T^n y) = 0.$$

 $\phi \in Aut(X, T)$ maps proximal points to proximal points.

Commutator in a group $G: [g, h] = ghg^{-1}h^{-1}$

$$G_0 = G$$
, $G_j = [G_{j-1}, G] = \langle [a, b]; a \in G_{j-1}, b \in G \rangle$.

◆□> ◆□> ◆臣> ◆臣> ―臣 …のへで

Commutator in a group $G: [g, h] = ghg^{-1}h^{-1}$

$$G_0 = G,$$
 $G_j = [G_{j-1}, G] = \langle [a, b]; a \in G_{j-1}, b \in G \rangle.$

A group G is d-step nilpotent if $G_d = \{e\}$.

Example. If d = 1, G is Abelian.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

G a *d*-step nilpotent Lie group. $\Gamma \subset G$ a lattice. Any minimal translation L_g in G/Γ is a nil translation.

<ロト <回 > < 注 > < 注 > … 注

G a *d*-step nilpotent Lie group. $\Gamma \subset G$ a lattice. Any minimal translation L_g in G/Γ is a nil translation.

Theorem (DDMP)

If $\pi: (X, T) \to \varprojlim_i (G_i/\Gamma_i, L_{g_i})$ is a proximal extension of an inverse limit of minimal d-nil translation, then Aut(X, T) is a d-step nilpotent group. Moreover, $\hat{\pi}: Aut(X, T) \to Aut(\varprojlim_i (G_i/\Gamma_i, L_{g_i}))$ is injective.

If (X, T) is a minimal proximal extension of its maximal non trivial d-step nilfactor (X_d, T_d) . Then Aut(X, T) embeds into $Aut(X_d, T_d)$, and Aut(X, T) is a d-step nilpotent group.

Example. To eplitz subshifts are proximal extension of their maximal equicontinuous factor (d = 1).

Their automorphism group is Abelian.

Given a countable group G. Does it exists a minimal subshift such that $\operatorname{Aut}(X, \sigma)/\langle \sigma \rangle$ is isomorphic to G?

Given a countable group G. Does it exists a minimal subshift such that $Aut(X, \sigma)/\langle \sigma \rangle$ is isomorphic to G ?

True for G: finite, \mathbb{Z}^d Salo: example Aut (X, σ) is Abelian not finitely generated

> ・ロト イラト イラト イラト ラ シへで Automorphism Groups of Minimal Subshifts of low complexity

Given a countable group G. Does it exists a minimal subshift such that $Aut(X, \sigma)/\langle \sigma \rangle$ is isomorphic to G ?

True for G: finite, \mathbb{Z}^d Salo: example Aut (X, σ) is Abelian not finitely generated

Question

Relation between growth rate of $Aut(X, \sigma)$ and the complexity ?

Given a countable group G. Does it exists a minimal subshift such that $Aut(X, \sigma)/\langle \sigma \rangle$ is isomorphic to G ?

True for G: finite, \mathbb{Z}^d Salo: example Aut (X, σ) is Abelian not finitely generated

Question

Relation between growth rate of $Aut(X, \sigma)$ and the complexity ?

Cyr and Kra: if $p_X(n)/n^2 \to 0$ then Aut $(X, \sigma)/\langle \sigma \rangle$ is periodic.

Automorphism Groups of Minimal Subshifts of low complexity