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Basic topological notions

Definition

Let (X ,T ) be a topological dynamical system, X a topological
space. An automorphism φ : X → X is an homeomorphism s.t.

φ ◦ T = T ◦ φ.

Aut(X ,T ) = {φ automorphism of (X ,T )}.

〈T 〉 ⊂ Z (Aut(X ,T )) ⊂ Aut(X ,T )

Q : What can we say on Aut(X ,T ) ?
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Basic topological notions

Let A be a finite alphabet.
AZ endowed with the product topology.
The shift map

σ : AZ → AZ

(xn)n∈Z 7→ (xn+1)n∈Z

For a closed set X ⊂ AZ, shift invariant (σ(X ) = X ), a subshift is
the dynamical system (X , σ|X ).
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Basic topological notions

Theorem (Curtis-Hedlund-Lyndon)

Let φ be an automorphism of (X , σ)
There exists a local map φ̂ : A2r+1 → A s.t.

φ(x)n = φ̂(xn−r · · · xn+r ) for any n ∈ Z.

e.g. A = {0, 1}, φ̂ :
000 001 010 011 100 101 110 111
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
0 1 0 1 0 1 0 1
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Basic topological notions

Theorem (Curtis-Hedlund-Lyndon)

Let φ be an automorphism of (X , σ)
There exists a local map φ̂ : A2r+1 → A s.t.

φ(x)n = φ̂(xn−r · · · xn+r ) for any n ∈ Z.

e.g. A = {0, 1}, φ̂ :
000 001 010 011 100 101 110 111
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
0 1 0 1 0 1 0 1

x = . . . 010011.1010101000111 . . .

φ(x) =
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Basic topological notions

Theorem (Curtis-Hedlund-Lyndon)

Let φ be an automorphism of (X , σ)
There exists a local map φ̂ : A2r+1 → A s.t.

φ(x)n = φ̂(xn−r · · · xn+r ) for any n ∈ Z.

e.g. A = {0, 1}, φ̂ :
000 001 010 011 100 101 110 111
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
0 1 0 1 0 1 0 1

x = . . . 01001 1.10 10101000111 . . .
↓

φ(x) = · · ·· .0
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Basic topological notions

Theorem (Curtis-Hedlund-Lyndon)

Let φ be an automorphism of (X , σ)
There exists a local map φ̂ : A2r+1 → A s.t.

φ(x)n = φ̂(xn−r · · · xn+r ) for any n ∈ Z.

e.g. A = {0, 1}, φ̂ :
000 001 010 011 100 101 110 111
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
0 1 0 1 0 1 0 1

x = . . . 010011 .101 0101000111 . . .
↓

φ(x) = · · · · .0 1
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Basic topological notions

Theorem (Curtis-Hedlund-Lyndon)

Let φ be an automorphism of (X , σ)
There exists a local map φ̂ : A2r+1 → A s.t.

φ(x)n = φ̂(xn−r · · · xn+r ) for any n ∈ Z.

e.g. A = {0, 1}, φ̂ :
000 001 010 011 100 101 110 111
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
0 1 0 1 0 1 0 1

x = . . . 010011.1 010 101000111 . . .
↓

φ(x) = · · · · .01 0
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Basic topological notions

Theorem (Curtis-Hedlund-Lyndon)

Let φ be an automorphism of (X , σ)
There exists a local map φ̂ : A2r+1 → A s.t.

φ(x)n = φ̂(xn−r · · · xn+r ) for any n ∈ Z.

e.g. A = {0, 1}, φ̂ :
000 001 010 011 100 101 110 111
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
0 1 0 1 0 1 0 1

x = . . . 010011.10 101 01000111 . . .
↓

φ(x) = · · · · .010 1
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Basic topological notions

Theorem (Curtis-Hedlund-Lyndon)

Let φ be an automorphism of (X , σ)
There exists a local map φ̂ : A2r+1 → A s.t.

φ(x)n = φ̂(xn−r · · · xn+r ) for any n ∈ Z.

e.g. A = {0, 1}, φ̂ :
000 001 010 011 100 101 110 111
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
0 1 0 1 0 1 0 1

x = . . . 010011.101 010 1000111 . . .
↓

φ(x) = · · · · .0101 0
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Basic topological notions

Theorem (Curtis-Hedlund-Lyndon)

Let φ be an automorphism of (X , σ)
There exists a local map φ̂ : A2r+1 → A s.t.

φ(x)n = φ̂(xn−r · · · xn+r ) for any n ∈ Z.

e.g. A = {0, 1}, φ̂ :
000 001 010 011 100 101 110 111
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
0 1 0 1 0 1 0 1

x = . . . 010011.1010 101 000111 . . .
↓

φ(x) = · · · · .01010 1
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Basic topological notions

Theorem (Curtis-Hedlund-Lyndon)

Let φ be an automorphism of (X , σ)
There exists a local map φ̂ : A2r+1 → A s.t.

φ(x)n = φ̂(xn−r · · · xn+r ) for any n ∈ Z.

e.g. A = {0, 1}, φ̂ :
000 001 010 011 100 101 110 111
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
0 1 0 1 0 1 0 1

x = . . . 010011.10101 010 00111 . . .
↓

φ(x) = · · · · .010101 0
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Basic topological notions

Theorem (Curtis-Hedlund-Lyndon)

Let φ be an automorphism of (X , σ)
There exists a local map φ̂ : A2r+1 → A s.t.

φ(x)n = φ̂(xn−r · · · xn+r ) for any n ∈ Z.

e.g. A = {0, 1}, φ̂ :
000 001 010 011 100 101 110 111
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
0 1 0 1 0 1 0 1

x = . . . 010011.101010 100 00111 . . .
↓

φ(x) = · · · · .0101010 0

Automorphism Groups of Minimal Subshifts of low complexity



Basic topological notions

Theorem (Curtis-Hedlund-Lyndon)

Let φ be an automorphism of (X , σ)
There exists a local map φ̂ : A2r+1 → A s.t.

φ(x)n = φ̂(xn−r · · · xn+r ) for any n ∈ Z.

e.g. A = {0, 1}, φ̂ :
000 001 010 011 100 101 110 111
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
0 1 0 1 0 1 0 1

x = . . . 010011.1010101 000 0111 . . .
↓

φ(x) = · · · · .01010100 0
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Basic topological notions

Theorem (Curtis-Hedlund-Lyndon)

Let φ be an automorphism of (X , σ)
There exists a local map φ̂ : A2r+1 → A s.t.

φ(x)n = φ̂(xn−r · · · xn+r ) for any n ∈ Z.

e.g. A = {0, 1}, φ̂ :
000 001 010 011 100 101 110 111
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
0 1 0 1 0 1 0 1

x = . . . 010011.10101010000111 . . .

φ(x) = . . . 0100111.0101010000111 . . .
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Basic topological notions

Theorem (Curtis-Hedlund-Lyndon)

Let φ be an automorphism of (X , σ)
There exists a local map φ̂ : A2r+1 → A s.t.

φ(x)n = φ̂(xn−r · · · xn+r ) for any n ∈ Z.

e.g. A = {0, 1}, φ̂ :
000 001 010 011 100 101 110 111
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
0 1 0 1 0 1 0 1

x = . . . 010011.10101010000111 . . .

φ(x) = . . . 0100111.0101010000111 . . . = σ(x)
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Basic topological notions

Theorem (Curtis-Hedlund-Lyndon)

Let φ be an automorphism of (X , σ)
There exists a local map φ̂ : A2r+1 → A s.t.

φ(x)n = φ̂(xn−r · · · xn+r ) for any n ∈ Z.

Corollary

Aut(X , σ) is countable.
Aut(X , σ) is a discrete subgroup of Homeo(X ) for the uniform
convergence topology.
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Main theorem

(X , σ) is minimal if any orbit is dense in X .

The complexity pX : N→ N, pX (n) = ] words of length n in X .

Theorem (DDMP)

Let (X , σ) be a minimal subshift. If

lim inf
n

pX (n)

n
< +∞,

then Aut(X , σ)/〈σ〉 is finite.
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Main theorem

Theorem (DDMP)

Let (X , σ) be a minimal subshift. If

lim inf
n

pX (n)

n
< +∞,

then Aut(X , σ)/〈σ〉 is finite.

Example.

Sturmian subshifts: pX (n) = n + 1 for all n.

Primitive substitutive subshifts:
minimal subshift (X , σ) with a clopen proper subset U ⊂ X
s.t. induced system (U, σU) is conjugate to (X , σ).

Linearly recurrent subshift.

Coding of minimal Interval Exchange Transformations.
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Theorem (DDMP)
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Main theorem

Theorem (DDMP)

Let (X , σ) be a minimal subshift. If

lim inf
n

pX (n)

n
< +∞,

then Aut(X , σ)/〈σ〉 is finite.

Example.

Sturmian subshifts: pX (n) = n + 1 for all n.

Primitive substitutive subshifts:
minimal subshift (X , σ) with a clopen proper subset U ⊂ X
s.t. induced system (U, σU) is conjugate to (X , σ).
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Main theorem

Theorem (DDMP)

Let (X , σ) be a minimal subshift. If

lim inf
n

pX (n)

n
< +∞,

then Aut(X , σ)/〈σ〉 is finite.

Example.

Sturmian subshifts: pX (n) = n + 1 for all n.

Primitive substitutive subshifts:
minimal subshift (X , σ) with a clopen proper subset U ⊂ X
s.t. induced system (U, σU) is conjugate to (X , σ).

Linearly recurrent subshift.

Coding of minimal Interval Exchange Transformations.
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Main theorem

Theorem (DDMP)

Let (X , σ) be a minimal subshift. If

lim inf
n

pX (n)

n
< +∞,

then Aut(X , σ)/〈σ〉 is finite.

Example. Primitive substitutive subshifts:
Generalizes results of V. Salo-I. Törmä.
Similar result by V. Cyr-B. Kra

This includes also

Subshifts of polynomial complexity of arbitrarily high degree.

Subshifts with subexponential complexity
pX (n) ≥ g(n) i.o. where limn g(n)/αn = 0 for any α > 1.

Automorphism Groups of Minimal Subshifts of low complexity



Main theorem

Theorem (DDMP)

Let (X , σ) be a minimal subshift. If

lim inf
n

pX (n)

n
< +∞,

then Aut(X , σ)/〈σ〉 is finite.

Example. This includes also

Subshifts of polynomial complexity of arbitrarily high degree.

Subshifts with subexponential complexity
pX (n) ≥ g(n) i.o. where limn g(n)/αn = 0 for any α > 1.
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Previous results: in the measurable setting

Centralizer group: for a measurable dynamical system (X ,B, µ,T ),

C (T ) = {φ : X → X ; bi-measurable, φ∗µ = µ, φ ◦ T = T ◦ φ}

D. Ornstein (72): mixing rank one system C (T ) = 〈T 〉.
A. Del Junco (78): same is true for the Chacon subshift.

J. King, J.-P. Thouvenot (91): mixing system of finite rank

C (T )/〈T 〉 is finite.
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From the measurable to the topological setting

For non-weakly mixing system:

B. Host, F. Parreau (89): for a family of substitutive systems

C (σ) = Aut(X , σ) and C (σ)/〈σ〉 is finite.

M. Lemańczyk, M. Mentzen (89): any finite group can be
realized as C (σ)/〈σ〉.
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Zoologie in the topological setting

For Subshift of finite Type (SFT) the automorphisms group is big.

Hedlund (69), Boyle, Lind & Rudolph (88): Let (X , σ) be an
uncountable SFT. Then Aut(X , σ)

Contains the direct sum of every countable collection of finite
group.

Contains the free group on a countable number of generators.

In this case:
Aut(X , σ) is not finitely generated, not amenable.
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For Subshift of finite Type (SFT) the automorphisms group is big.

Hedlund (69), Boyle, Lind & Rudolph (88): Let (X , σ) be an
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Zoologie, positive entropy

Hochman (2010): for (X , σ) positive entropy SFT, then Aut(X , σ)
contains every finite group.

Proposition (DDMP)

There exists a minimal positive entropy subshift (X , σ) such that

Aut(X , σ) = 〈σ〉.

Notice this example is not weakly-mixing.
Given by a Toeplitz sequence:
i.e. a subshift {σn(x) : n ∈ Z} s.t.
for any neighborhood U of x

{n ∈ Z : σn(x) ∈ U} contains a subgroup of Z.
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Zoologie, positive entropy

Hochman (2010): for (X , σ) positive entropy SFT, then Aut(X , σ)
contains every finite group.

Proposition (DDMP)

There exists a minimal positive entropy subshift (X , σ) such that

Aut(X , σ) = 〈σ〉.

Notice this example is not weakly-mixing.
Given by a Toeplitz sequence:
i.e. a subshift {σn(x) : n ∈ Z} s.t.
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{n ∈ Z : σn(x) ∈ U} contains a subgroup of Z.
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Main Ideas

Lemma

Let (X ,T ) be a minimal aperiodic dynamical system. The action
of Aut(X ,T ) on X

Aut(X ,T )× X → X

(φ, x) 7→ φ(x),

is free (the stabilizer of any point is trivial).

Proof. For any automorphism φ, the set

{x ;φ(x) = x}

is closed and T invariant.
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Main Ideas

Two orbits Orb
(1)
T and Orb

(2)
T are asymptotic, if they contains

asymptotic points, i.e.:

∃x ∈ Orb
(1)
T , y ∈ Orb

(2)
T s.t.

lim
n→+∞

dist(T n(x),T n(y)) = 0.

Any infinite subshift admits asymptotic orbits.

This defines an equivalence relation.

Any automorphism φ maps asymptotic orbits to asymptotic
orbits.

Any automorphism φ induces a permutation on the collection
of asymptotic class of orbits.
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Main Ideas
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asymptotic points, i.e.:
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Main Ideas

Corollary

For a minimal t.d.s. (X ,T ), with two asymptotic orbits, we have

{1} −→ 〈T 〉 −→ Aut(X ,T )
j−→ Per O,

where :

O denote the collection of non trivial asymptotic class of
orbits.

Per O denotes the set of permutations on this set.
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Main Ideas

Corollary

For a minimal t.d.s. (X ,T ), with two asymptotic orbits, we have

{1} −→ 〈T 〉 −→ Aut(X ,T )
j−→ Per O,

where :

O denote the collection of non trivial asymptotic class of
orbits.

Per O denotes the set of permutations on this set.

j(φ) has a fixed point ⇔ φ ∈ 〈T 〉
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Main Ideas

Corollary

For a minimal t.d.s. (X ,T ), with two asymptotic orbits, we have

{1} −→ 〈T 〉 −→ Aut(X ,T )
j−→ Per O,

where :

O denote the collection of non trivial asymptotic class of
orbits.

Per O denotes the set of permutations on this set.

If ]O = 1, then Aut(X ,T ) = 〈T 〉.
e.g. for Sturmian sequences
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Main Ideas

Corollary

For a minimal t.d.s. (X ,T ), with two asymptotic orbits, we have

{1} −→ 〈T 〉 −→ Aut(X ,T )
j−→ Per O,

where :

O denote the collection of non trivial asymptotic class of
orbits.

Per O denotes the set of permutations on this set.

If ]O < +∞, then ]Aut(X ,T )/〈T 〉 divides ]O.
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Main Ideas

Proposition

Let (X , σ) be a subshift with lim infn pX (n)/n <∞.
Then there is a finite number of asymptotic pair, i.e.

]O < +∞.
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More generally

In the same way: x , y ∈ X are proximal if

lim inf
n

dist(T nx ,T ny) = 0.

φ ∈ Aut(X ,T ) maps proximal points to proximal points.
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Commutator in a group G : [g , h] = ghg−1h−1

G0 = G , Gj = [Gj−1,G ] = 〈[a, b]; a ∈ Gj−1, b ∈ G 〉.

A group G is d-step nilpotent if Gd = {e}.

Example. If d = 1, G is Abelian.
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G a d-step nilpotent Lie group. Γ ⊂ G a lattice.
Any minimal translation Lg in G/Γ is a nil translation.

Theorem (DDMP)

If π : (X ,T )→ lim←−i
(Gi/Γi , Lgi ) is a proximal extension of an

inverse limit of minimal d-nil translation,
then Aut(X ,T ) is a d-step nilpotent group.
Moreover, π̂ : Aut(X ,T )→ Aut(lim←−i

(Gi/Γi , Lgi )) is injective.
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Theorem (DDMP)

If (X ,T ) is a minimal proximal extension of its maximal non trivial
d-step nilfactor (Xd ,Td). Then Aut(X ,T ) embeds into
Aut(Xd ,Td), and Aut(X ,T ) is a d-step nilpotent group.

Example. Toeplitz subshifts are proximal extension of their
maximal equicontinuous factor (d = 1).

Their automorphism group is Abelian.
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Open questions

Question

Given a countable group G . Does it exists a minimal subshift such
that Aut(X , σ)/〈σ〉 is isomorphic to G ?

True for G : finite, Zd

Salo: example Aut(X , σ) is Abelian not finitely generated

Question

Relation between growth rate of Aut(X , σ) and the complexity ?

Cyr and Kra: if pX (n)/n2 → 0 then Aut(X , σ)/〈σ〉 is periodic.
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