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Theorem

(mean ergodic theorem):

Let X be a reflexive Banach space
and T ∈ B(X ) power bounded. Let x ∈ X. Then

lim
N→∞

1
N

N∑
n=1

T nx

exists. Moreover, the limit is equal to Ps, where P is the
projection onto N(T − I) along R(T − I).
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Problem: Let (an) be an increasing sequence.

When the limit

lim
N→∞

1
N

N∑
n=1

T an

exists?
When 1

N

∑N
n=1 T an converges to the "proper" limit?
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Theorem

Akcoglu - Sucheston, Jones - Kuftinec, Lin (1971)

Let T ∈ B(H)
be a contraction, T n → 0 (WOT ).
Then limN→∞

1
N

∑N
n=1 T anx = 0 for all strictly increasing

sequences (an) ⊂ N and all x ∈ H.

Corollary

Let T ∈ B(H) be a completely non-unitary contraction. Then
limN→∞

1
N

∑N
n=1 T anx = 0 for all strictly increasing sequences

(an) ⊂ N and all x ∈ H.
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Theorem

Let T ∈ B(H) be a contraction, T n → 0 (WOT ).
Then limN→∞

1
N

∑N
n=1 T anx = 0 for all strictly increasing

sequences (an) ⊂ N and all x ∈ H.

not true for Banach spaces
true for `p, V.M., Tomilov (2007)
open for Lp

true for positive contractions on Lp, Below (1975)
not true for power bounded Hilbert space operators, V.M.,
Tomilov (2007)
T n → 0 (WOT ) is necessary
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Theorem

Let T ∈ B(H) be a polynomially bounded operator such that
T n → 0 (WOT ). Let (an) ⊂ N be a strictly increasing
subsequence. Then

N−1
N∑

n=1

T an → 0 (SOT )

Theorem

Let T ∈ B(H) be a power bounded operator of class C·,1 such
that T n → 0 (WOT ). Let (an) ⊂ N be a strictly increasing
subsequence. Then

N−1
N∑

n=1

T an → 0 (SOT )
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Theorem

Blum -Eisenberg (1974)

Let (an) be a strictly increasing
sequence. The following statements are equivalent:
(i) N−1 ∑N

n=1 T an converges (SOT) for all Hilbert space
contractions T ;
(ii) N−1 ∑N

n=1 Uan converges (SOT) for all unitary operators U;
(iii) N−1 ∑N

n=1 λan converges for all λ ∈ C, |λ| = 1.
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Lemma

(van der Corput):

Let (un) be a bounded sequence in a Hilbert
space. For h = 0, 1, . . . let

sh = lim sup
N→∞

∣∣∣N−1
N∑

n=1

〈un+h, un〉
∣∣∣.

Suppose that

lim
H→∞

H−1
H−1∑
h=0

sh = 0.

Then

lim
N→∞

N−1
N∑

n=1

un = 0.
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Corollary

Let U be a unitary operator,

σp(U) = ∅. Then

lim
N→∞

N−1
N∑

n=1

Un2
x = 0

for each x.

Corollary

Let U be a unitary operator, σp(U) ∩ {e2πit : t rational} = ∅. Let
p be a polynomial such that p(N) ⊂ N. Then

lim
N→∞

N−1
N∑

n=1

Up(n)x = 0

for each x.

Vladimir Müller Mean ergodic theorem for polynomial subsequences



Corollary

Let U be a unitary operator, σp(U) = ∅.

Then

lim
N→∞

N−1
N∑

n=1

Un2
x = 0

for each x.

Corollary

Let U be a unitary operator, σp(U) ∩ {e2πit : t rational} = ∅. Let
p be a polynomial such that p(N) ⊂ N. Then

lim
N→∞

N−1
N∑

n=1

Up(n)x = 0

for each x.

Vladimir Müller Mean ergodic theorem for polynomial subsequences



Corollary

Let U be a unitary operator, σp(U) = ∅. Then

lim
N→∞

N−1
N∑

n=1

Un2
x = 0

for each x.

Corollary

Let U be a unitary operator, σp(U) ∩ {e2πit : t rational} = ∅. Let
p be a polynomial such that p(N) ⊂ N. Then

lim
N→∞

N−1
N∑

n=1

Up(n)x = 0

for each x.

Vladimir Müller Mean ergodic theorem for polynomial subsequences



Corollary

Let U be a unitary operator, σp(U) = ∅. Then

lim
N→∞

N−1
N∑

n=1

Un2
x = 0

for each x.

Corollary

Let U be a unitary operator,

σp(U) ∩ {e2πit : t rational} = ∅. Let
p be a polynomial such that p(N) ⊂ N. Then

lim
N→∞

N−1
N∑

n=1

Up(n)x = 0

for each x.

Vladimir Müller Mean ergodic theorem for polynomial subsequences



Corollary

Let U be a unitary operator, σp(U) = ∅. Then

lim
N→∞

N−1
N∑

n=1

Un2
x = 0

for each x.

Corollary

Let U be a unitary operator, σp(U) ∩ {e2πit : t rational} = ∅.

Let
p be a polynomial such that p(N) ⊂ N. Then

lim
N→∞

N−1
N∑

n=1

Up(n)x = 0

for each x.

Vladimir Müller Mean ergodic theorem for polynomial subsequences



Corollary

Let U be a unitary operator, σp(U) = ∅. Then

lim
N→∞

N−1
N∑

n=1

Un2
x = 0

for each x.

Corollary

Let U be a unitary operator, σp(U) ∩ {e2πit : t rational} = ∅. Let
p be a polynomial such that p(N) ⊂ N.

Then

lim
N→∞

N−1
N∑

n=1

Up(n)x = 0

for each x.

Vladimir Müller Mean ergodic theorem for polynomial subsequences



Corollary

Let U be a unitary operator, σp(U) = ∅. Then

lim
N→∞

N−1
N∑

n=1

Un2
x = 0

for each x.

Corollary

Let U be a unitary operator, σp(U) ∩ {e2πit : t rational} = ∅. Let
p be a polynomial such that p(N) ⊂ N. Then

lim
N→∞

N−1
N∑

n=1

Up(n)x = 0

for each x.

Vladimir Müller Mean ergodic theorem for polynomial subsequences



Corollary

Let U be a unitary operator.
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Corollary

Let T ∈ B(H) be a contraction.

Let p be a polynomial such that
p(N) ⊂ N. Then

lim
N→∞

N−1
N∑

n=1

T p(n)x

exists for each x.

The same is true for many reasonable sequences (an).
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Theorem

Let T ∈ B(H) be power bounded, x ∈ H. Let (an) be strictly
increasing convex sequence in N

such that supn
a2n
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(1) Is it possible to generalize this for other sequences?
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Theorem

Let T ∈ B(H) be a power bounded operator on a Hilbert space
H, σp(T ) ∩ T = ∅.

Let m ∈ N0, let f : [0,∞) → [0,∞) be a
function satisfying f ′ > 0, f ′′ > 0, · · · , f (m+1) > 0 ,

sup
{

f (m+1)(s)

f (m+1)(t)
: 1 ≤ t ≤ s

}
< ∞, (for example, f (m+2) < 0), and

sup
{

f (m)(t)
t f (m+1)(t)

: t ≥ 1
}

< ∞. Let (hn) be a bounded

integer-valued sequence. Then

SOT − lim
N→∞

N−1
N∑

n=1

T [f (n)]+hn = 0.
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Corollary

Let T ∈ B(H) be a power bounded operator on a Hilbert space
H, σp(T ) ∩ T = ∅.

Let f (t) =
∑k

j=0 cj tαj , where k ∈ N0,
c0, . . . , ck , α0, . . . , αk ∈ R, c0 > 0,
α0 > max{0, α1, . . . , αk}.Then

lim
N→∞

N−1
N∑

n=1

T [f (n)]x = 0

for all x ∈ H.
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n=1 T an cannot exist in general if (an) is

increasing too fast

(exponentially)

an example is the Foguel operator
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Theorem

Let 1 < p < ∞, X = Lp(µ), let T ∈ B(X ) be a power bounded
operator

, T ≥ 0, let x ∈ X, x ≥ 0. Let (an)
∞
n=1 be a strictly

increasing sequence of positive integers such that
sup

{a2n
an

: n ∈ N
}

< ∞. Suppose also that limn→∞ dn = ∞ and
D := sup{dj − dk : 1 ≤ j ≤ k} < ∞, where dn = an+1 − an.

Suppose that lim
N→∞

N−1
N∑

n=1

T an+j−anx = 0 (j ∈ N)

and lim
N→∞

N−1
N∑

n=1

T an−an+j+jD+(aN+j−aN)x = 0 (j ∈ N).

Then lim
N→∞

N−1
N∑

n=1

T anx = 0 and lim
N→∞

N−1
N∑

n=1

T aN−anx = 0.
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Theorem

Let (T (t)t≥0 be a bounded strongly continuous semigroup on a
Hilbert space H.

Let f (t) =
∑k

j=0 cj tαj , where c0 > 0, cj ∈ R,
α0 > max{0, α1, . . . , αk}. Suppose that f ≥ 0. Then

lim
N→∞

N−1
∫ N

0
Tf (t)dt

exists in the strong operator topology and is equal to the
projection P onto the kernel of the generator of the semigroup
(T (t)) with ker P =

⋃
ε>0(T − εI)H.
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