Linear chaos and frequent hypercyclicity

Quentin Menet

Laboratoire de Mathématiques de Lens

September 28, 2015

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - わへで

Plan

1 Hypercyclicity and linear chaos

2 Frequent hypercyclicity

3 Links between linear chaos and frequent hypercyclicity

Hypercyclicity

Let X be an infinite-dimensional separable Fréchet space and $T \in L(X)$.

Hypercyclicity

Let X be an infinite-dimensional separable Fréchet space and $T \in L(X)$.

Definition

T is said to be **hypercyclic** if there exists a vector $x \in X$ such that $Orb(x, T) := \{T^n x : n \ge 0\}$ is dense in X.

Hypercyclicity

Let X be an infinite-dimensional separable Fréchet space and $T \in L(X)$.

Definition

T is said to be **hypercyclic** if there exists a vector $x \in X$ such that $Orb(x, T) := \{T^n x : n \ge 0\}$ is dense in X.

In other words, T is hypercyclic if there exists a vector $x \in X$ such that for every non-empty open set $U \subset X$,

$$N(x, U) := \{n \ge 0 : T^n x \in U\} \neq \emptyset$$

(or equivalently, $\#N(x, U) = \infty$).

Weighted shifts

Let $w = (w_n)_{n \ge 1}$ be a bounded sequence of non-zero scalars. The weighted shift B_w is the linear and continuous operator on ℓ^p (or on c_0) given by

$$B_w(x_0, x_1, x_2, x_3, \dots) = (w_1 x_1, w_2 x_2, w_3 x_3, w_4 x_4, \dots).$$

Theorem (Salas 1995)

Let B_w be a weighted shift on c_0 or ℓ^p . Then the following assertions are equivalent :

■ *B_w* is hypercyclic;

•
$$\sup_{n\geq 1}\prod_{\nu=1}^n |w_\nu| = \infty.$$

Periodic points

Definition

Let $T \in L(X)$. A vector $x \in X$ is a periodic point of T if there exists $d \ge 1$ such that $T^d x = x$. We denote by Per(T) the set of periodic points of T.

Remark

Let $T \in L(X)$. We have

 $\operatorname{Per}(T) = \operatorname{span}\{x \in X : Tx = \lambda x \text{ for some root of unity } \lambda\}.$

Linear chaos

Definition

An operator T is said to be **chaotic** if the following two conditions are satisfied :

- **1** *T* is hypercyclic;
- **2** Per(T) is dense in X.

Linear chaos

Definition

An operator \mathcal{T} is said to be **chaotic** if the following two conditions are satisfied :

- **1** *T* is hypercyclic;
- **2** Per(T) is dense in X.

In other words, an operator T is chaotic if in every non-empty open set,

- **1** there exists x such that Orb(x, T) is dense;
- 2 there exists z such that $T^d z = z$ for some $d \ge 1$.

Example of chaotic operators

Theorem (Grosse-Erdmann 2000)

Let w be a bounded sequence of non-zero scalars. The operator B_w is chaotic on ℓ^p if and only if

$$\sum_{n=1}^{\infty} \frac{1}{\prod_{k=1}^{n} |w_k|^p} < \infty,$$

and B_w is chaotic on c_0 if and only if $\prod_{k=1}^n |w_k| \to \infty$.

Plan

1 Hypercyclicity and linear chaos

2 Frequent hypercyclicity

3 Links between linear chaos and frequent hypercyclicity

Frequent hypercyclicity

Definition

An operator T on X is said to be **frequently hypercyclic** if there exists a vector $x \in X$ (also called frequently hypercyclic) such that for any non-empty open set $U \subset X$,

 $\underline{\operatorname{dens}}\{n\geq 0:\,T^nx\in U\}>0,$

where for any subset A of \mathbb{Z}_+ (the set of non-negative integers), we define the lower density of A as

$$\underline{\mathsf{dens}}\,A = \liminf_{N \to \infty} \frac{\#(A \cap [0, N])}{N+1}.$$

Frequently hypercyclic weighted shifts

Theorem (Bayart-Ruzsa 2015)

Let B_w be a weighted shift on ℓ^p . The following assertions are equivalent :

- **1** B_w is frequently hypercyclic;
- **2** B_w is chaotic;

3
$$\sum_{k=1}^{\infty} \frac{1}{\prod_{\nu=1}^{k} |w_{\nu}|^{p}} < \infty.$$

Let (X, T) be a linear dynamical system. If T admits an ergodic probability measure with full support, *i.e.* a probability measure m s.t.

- for every $A \in \mathcal{B}$, $m(T^{-1}A) = m(A)$,
- for every $A \in \mathcal{B}$, $T^{-1}A = A \Rightarrow m(A) = 0$ or 1,
- for every non-empty open set U, m(U) > 0,

Let (X, T) be a linear dynamical system. If T admits an ergodic probability measure with full support, *i.e.* a probability measure m s.t.

- for every $A \in \mathcal{B}$, $m(T^{-1}A) = m(A)$,
- for every $A \in \mathcal{B}$, $T^{-1}A = A \Rightarrow m(A) = 0$ or 1,
- for every non-empty open set U, m(U) > 0,

then, by Birkhoff ergodic theorem, we deduce that for any m-integrable function f on X, we have

$$\frac{1}{N+1}\sum_{n=0}^{N}f(T^nx)\rightarrow \int_X fdm \quad \text{for m-almost all } x\in X.$$

Let (X, T) be a linear dynamical system. If T admits an ergodic probability measure with full support, *i.e.* a probability measure m s.t.

- for every $A \in \mathcal{B}$, $m(T^{-1}A) = m(A)$,
- for every $A \in \mathcal{B}$, $T^{-1}A = A \Rightarrow m(A) = 0$ or 1,
- for every non-empty open set U, m(U) > 0,

then, by Birkhoff ergodic theorem, we deduce that for any m-integrable function f on X, we have

$$\frac{1}{N+1}\sum_{n=0}^{N}f(T^nx)\rightarrow \int_X fdm \quad \text{for m-almost all } x\in X.$$

By considering $f = 1_U$ where U is a non-empty open set, we get

 $\underline{\operatorname{dens}}\{n\geq 0:\, T^nx\in U\}=m(U)>0\quad \text{for m-almost all }x\in X.$

Let (X, T) be a linear dynamical system. If T admits an ergodic probability measure with full support, *i.e.* a probability measure m s.t.

- for every $A \in \mathcal{B}$, $m(T^{-1}A) = m(A)$,
- for every $A \in \mathcal{B}$, $T^{-1}A = A \Rightarrow m(A) = 0$ or 1,
- for every non-empty open set U, m(U) > 0,

then, by Birkhoff ergodic theorem, we deduce that for any m-integrable function f on X, we have

$$\frac{1}{N+1}\sum_{n=0}^{N}f(T^nx)\rightarrow \int_X fdm \quad \text{for m-almost all } x\in X.$$

By considering $f = 1_U$ where U is a non-empty open set, we get

$$\underline{\operatorname{dens}}\{n\geq 0:\, T^nx\in U\}=m(U)>0\quad \text{for m-almost all }x\in X.$$

We conclude that T is frequently hypercyclic.

Existence of ergodic probability measures

Definition

Let X be a complex Fréchet space and $T \in L(X)$. We say that T has a **perfectly spanning set of unimodular eigenvectors** if, for every countable set $D \subset \mathbb{T}$, we have

$$\overline{\operatorname{span}}[\operatorname{ker}(T - \lambda I) : \lambda \in \mathbb{T} \setminus D] = X.$$

Theorem (Grivaux 2011 - Bayart-Matheron 2014)

Let X be a complex Fréchet space and $T \in L(X)$. If T has a perfectly spanning set of unimodular eigenvectors then T admits an ergodic Gaussian measure with full support and thus T is frequently hypercyclic.

・ 何 ト ・ ヨ ト ・ ヨ ト

\mathcal{U} -frequent hypercyclicity and reiterative hypercyclicity

Definition

- An operator T on X is said to be \mathcal{U} -frequently hypercyclic if there exists a vector $x \in X$ such that for any non-empty open set $U \subset X$ $\overline{\text{dens}} \{n \ge 0 : T^n x \in U\} > 0$, where $\overline{\text{dens}} A = \limsup_{N \to \infty} \frac{\#(A \cap [0, N])}{N+1}$.
- An operator *T* on *X* is said to be **reiteratively hypercyclic** if there exists a vector *x* ∈ *X* such that for any non-empty open set *U* ⊂ *X*

$$\overline{\mathrm{Bd}}\{n\geq 0: T^n x\in U\}>0,$$

where $\overline{\mathrm{Bd}}(A) = \lim_{s \to \infty} \frac{\alpha^s}{s}$ with $\alpha^s = \limsup_{k \to \infty} |A \cap [k+1, k+s]|$.

$$T$$
 fhc \Rightarrow T \mathcal{U} -fhc \Rightarrow T reit. hyp.

Plan

1 Hypercyclicity and linear chaos

2 Frequent hypercyclicity

3 Links between linear chaos and frequent hypercyclicity

Links between linear chaos and frequent hypercyclicity

Theorem (Bonilla - Grosse-Erdmann 2007/Bayart-Grivaux 2007)

Every chaotic weighted shift on c_0 is frequently hypercyclic but there exists a frequently hypercyclic weighted shift on c_0 which is not chaotic.

Links between linear chaos and frequent hypercyclicity

Theorem (Bonilla - Grosse-Erdmann 2007/Bayart-Grivaux 2007)

Every chaotic weighted shift on c_0 is frequently hypercyclic but there exists a frequently hypercyclic weighted shift on c_0 which is not chaotic.

Question

Is every chaotic operator frequently hypercyclic?

Links between linear chaos and frequent hypercyclicity

Theorem (Bonilla - Grosse-Erdmann 2007/Bayart-Grivaux 2007)

Every chaotic weighted shift on c_0 is frequently hypercyclic but there exists a frequently hypercyclic weighted shift on c_0 which is not chaotic.

Question

Is every chaotic operator frequently hypercyclic?

Theorem (M. 2015)

There exists a chaotic operator on ℓ^p which is not \mathcal{U} -frequently hypercyclic and thus not frequently hypercyclic.

Read-type operators

Read-type operators are defined on ℓ^1 by

$$Te_k = w_{k+1}e_{k+1} + f_k,$$

where $f_k \in \operatorname{span}\{e_0, \ldots, e_k\}$.

Read-type operators

Read-type operators are defined on ℓ^1 by

$$Te_k = w_{k+1}e_{k+1} + f_k,$$

where $f_k \in \operatorname{span}\{e_0, \ldots, e_k\}$.

Theorem (Read 1986)

There exists a Read-type operator on ℓ^1 possessing no non-trivial invariant subspace.

Theorem (Bayart-Matheron 2007)

There exists a Read-type operator T on ℓ^1 such that $T \oplus T$ is not hypercyclic and e_0 has a dense orbit under the action of T.

$$Te_{k} = \begin{cases} w_{k+1}e_{k+1} & \text{if } k \in [b_{n}, b_{n+1} - 1[\\ \left(\prod_{j=b_{n+1}}^{b_{n+1}-1} w_{j}\right)^{-1}e_{b_{n}} & \text{if } k = b_{n+1} - 1 \end{cases}$$

Remark : T is continuous if w is bounded and $w_k \ge 1$ for every k.

$$Te_{k} = \begin{cases} w_{k+1}e_{k+1} & \text{if } k \in [b_{n}, b_{n+1} - 1[\\ -(\prod_{j=b_{n+1}}^{b_{n+1}-1} w_{j})^{-1}e_{b_{n}} & \text{if } k = b_{n+1} - 1 \end{cases}$$

Remark : T is continuous if w is bounded and $w_k \ge 1$ for every k.

.

Proposition 1 (M. 2015)

Let w and ρ be two bounded sequences with $w_k \ge 1$ for every k and let $T: \ell^1 \to \ell^1$ be the operator defined by

$$Te_{k} = \begin{cases} w_{k+1}e_{k+1} & \text{if } k \in [b_{n}, b_{n+1} - 1[\\ \rho_{n}e_{b_{\varphi(n)}} - \left(\prod_{j=b_{n}+1}^{b_{n+1}-1}w_{j}\right)^{-1}e_{b_{n}} & \text{if } k = b_{n+1} - 1 & \text{with } n \ge 1\\ -\left(\prod_{j=1}^{b_{1}-1}w_{j}\right)^{-1}e_{0} & \text{if } k = b_{1} - 1. \end{cases}$$

If $\varphi(n) < n$ for every $n \ge 1$ and if $(b_{n+1} - b_n)$ is a multiple of $2(b_n - b_{n-1})$ for every $n \ge 1$ then for every $n \ge 0$, every $k \in [b_n, b_{n+1}]$, we have

$$T^{2(b_{n+1}-b_n)}e_k=e_k.$$

Therefore, the operator T possesses a dense set of periodic points.

Quentin Menet

Proof : Let $n \ge 1$. We assume that $T^{2(b_{m+1}-b_m)}e_{b_m} = e_{b_m}$ is satisfied for every m < n. By definition of T, we get

$$T^{b_{n+1}-b_n}e_{b_n} = \Big(\prod_{j=b_n+1}^{b_{n+1}-1}w_j\Big)\rho_n e_{b_{\varphi(n)}} - e_{b_n}.$$

Proof : Let $n \ge 1$. We assume that $T^{2(b_{m+1}-b_m)}e_{b_m} = e_{b_m}$ is satisfied for every m < n. By definition of T, we get

$$T^{b_{n+1}-b_n}e_{b_n} = \Big(\prod_{j=b_n+1}^{b_{n+1}-1}w_j\Big)\rho_n e_{b_{\varphi(n)}} - e_{b_n}.$$

Since $\varphi(n) < n$ and $b_{n+1} - b_n$ is a multiple of $2(b_{\varphi(n)+1} - b_{\varphi(n)})$, we then deduce from our induction hypothesis that

$$T^{2(b_{n+1}-b_n)}e_{b_n} = T^{b_{n+1}-b_n} \left(\left(\prod_{j=b_n+1}^{b_{n+1}-1} w_j\right) \rho_n e_{b_{\varphi(n)}} - e_{b_n} \right)$$
$$= \left(\prod_{j=b_n+1}^{b_{n+1}-1} w_j\right) \rho_n e_{b_{\varphi(n)}} - T^{b_{n+1}-b_n} e_{b_n}$$
$$= \left(\prod_{j=b_n+1}^{b_{n+1}-1} w_j\right) \rho_n e_{b_{\varphi(n)}} - \left(\left(\prod_{j=b_n+1}^{b_{n+1}-1} w_j\right) \rho_n e_{b_{\varphi(n)}} - e_{b_n} \right) = e_{b_n}.$$

Proposition 2 (M. 2015)

Under the assumptions of Proposition 1, if for every $k \ge 0$, $\#\varphi^{-1}(k) = \infty$ and $\delta_n - \tau_n \to \infty$ then T is chaotic on ℓ^1 .

Idea : Given $k \ge 0$, there exists $n \ge 0$ as large as desired such that $\varphi(n) = k$ and thus

$$T^{b_{n+1}-b_n}\left(\frac{2^{\tau_n}}{2^{\delta_n}}e_{b_n}\right)=e_{b_k}-\frac{2^{\tau_n}}{2^{\delta_n}}e_{b_n}.$$

Goal 3 : Find a chaotic operator which is not \mathcal{U} -frequently hypercyclic.

Idea : It is sufficient to show that for every hypercyclic vector x for T, there exists $\varepsilon > 0$ such that

 $\overline{dens}(\{n\geq 0: T^nx\in B(0,\varepsilon)\})=0.$

Goal 3 : Find a chaotic operator which is not \mathcal{U} -frequently hypercyclic.

Idea : It is sufficient to show that for every hypercyclic vector x for T, there exists $\varepsilon > 0$ such that

$$\overline{dens}(\{n \ge 0 : T^n x \in B(0,\varepsilon)\}) = 0.$$

Since $\overline{\text{dens}}(A) + \underline{\text{dens}}(A^c) = 1$, it thus suffices to prove that for every hypercyclic vector x for T, there exists $\varepsilon > 0$ such that

$$\underline{dens}(\{n \ge 0 : \|T^n x\| \ge \varepsilon\}) = 1.$$

Proposition 3 (M. 2015)

Under the assumptions of Proposition 2, if $\frac{\delta_n}{b_{n+1}-b_n} \searrow 0$ and $\tau_k \ge \delta_{k-1} + 2(k+1)$ for every $k \ge 1$, then T is chaotic ℓ^1 and T is not \mathcal{U} -frequently hypercyclic.

There exist chaotic operators which are not \mathcal{U} -frequently hypercyclic and thus not frequently hypercyclic.

There exist chaotic operators which are not $\mathcal U\text{-}\mathsf{frequently}$ hypercyclic and thus not frequently hypercyclic.

Proof : Thanks to previous propositions, we know that ${\cal T}$ is chaotic on ℓ_1 and not frequently hypercyclic if

1
$$(b_{n+1} - b_n)$$
 is a multiple of $2(b_n - b_{n-1})$ for every $n \ge 1$;
2 $\delta_n - \tau_n \to \infty$;
3 $\frac{\delta_n}{b_{n+1} - b_n} \searrow 0$;
4 $\tau_k \ge \delta_{k-1} + 2(k+1)$ for every $k \ge 1$.

There exist chaotic operators which are not $\mathcal U\text{-}\mathsf{frequently}$ hypercyclic and thus not frequently hypercyclic.

Proof : Thanks to previous propositions, we know that ${\cal T}$ is chaotic on ℓ_1 and not frequently hypercyclic if

1
$$(b_{n+1} - b_n)$$
 is a multiple of $2(b_n - b_{n-1})$ for every $n \ge 1$;
2 $\delta_n - \tau_n \to \infty$;
3 $\frac{\delta_n}{b_{n+1} - b_n} \searrow 0$;
4 $\tau_k \ge \delta_{k-1} + 2(k+1)$ for every $k \ge 1$.

Each of these properties is satisfied if we consider

$$\tau_n = 4^{n+1}, \quad \delta_n = 2\tau_n \quad \text{and} \quad b_n - b_{n-1} = 4^{2n+1}.$$

Corollary (M. 2015)

There exist chaotic operators which does not possess a perfectly spanning set of unimodular eigenvectors.

Corollary (M. 2015)

There exist chaotic operators which does not possess a perfectly spanning set of unimodular eigenvectors.

Theorem (M. 2015)

The operator T, given by the parameters

$$au_n = 4^{n+1}, \quad \delta_n = 2 au_n \quad \text{and} \quad b_n - b_{n-1} = 4^{2n+1},$$

is a chaotic operator with only countably many unimodular eigenvalues. More precisely, every unimodular eigenvalue λ of T satisfies $\lambda^{b_{n+1}-b_n} = 1$ for some $n \ge 0$.

Every chaotic operator on a separable infinite-dimensional Fréchet space is reiteratively hypercyclic.

Every chaotic operator on a separable infinite-dimensional Fréchet space is reiteratively hypercyclic.

Proof : Let x be a hypercyclic vector for T and let U be a non-empty open subset of X.

Let $z \in U$ be a periodic point and d a positive integer such that $T^d z = z$.

Every chaotic operator on a separable infinite-dimensional Fréchet space is reiteratively hypercyclic.

Proof : Let x be a hypercyclic vector for T and let U be a non-empty open subset of X.

Let $z \in U$ be a periodic point and d a positive integer such that $T^d z = z$. For every $n \ge 0$, the set $U_n := \bigcap_{l=0}^n T^{-ld} U$ is a non-empty open set.

Every chaotic operator on a separable infinite-dimensional Fréchet space is reiteratively hypercyclic.

Proof : Let x be a hypercyclic vector for T and let U be a non-empty open subset of X.

Let $z \in U$ be a periodic point and d a positive integer such that $T^d z = z$. For every $n \ge 0$, the set $U_n := \bigcap_{l=0}^n T^{-ld} U$ is a non-empty open set. In particular, for every $n \ge 0$, the set $N(x, U_n)$ is non-empty, i.e. there exists $k_n \ge 0$ such that $T^{k_n+ld}x \in U$ for every $l \le n$.

Every chaotic operator on a separable infinite-dimensional Fréchet space is reiteratively hypercyclic.

Proof : Let x be a hypercyclic vector for T and let U be a non-empty open subset of X.

Let $z \in U$ be a periodic point and d a positive integer such that $T^d z = z$. For every $n \ge 0$, the set $U_n := \bigcap_{l=0}^n T^{-ld} U$ is a non-empty open set. In particular, for every $n \ge 0$, the set $N(x, U_n)$ is non-empty, i.e. there exists $k_n \ge 0$ such that $T^{k_n+ld}x \in U$ for every $l \le n$. This implies that

$$N(x, U) \supset \bigcup_{n \ge 0} \{k_n + Id : 0 \le I \le n\}.$$

Every chaotic operator on a separable infinite-dimensional Fréchet space is reiteratively hypercyclic.

Proof : Let x be a hypercyclic vector for T and let U be a non-empty open subset of X.

Let $z \in U$ be a periodic point and d a positive integer such that $T^d z = z$. For every $n \ge 0$, the set $U_n := \bigcap_{l=0}^n T^{-ld} U$ is a non-empty open set. In particular, for every $n \ge 0$, the set $N(x, U_n)$ is non-empty, i.e. there exists $k_n \ge 0$ such that $T^{k_n+ld}x \in U$ for every $l \le n$. This implies that

$$N(x, U) \supset \bigcup_{n \ge 0} \{k_n + Id : 0 \le I \le n\}.$$

We conclude that T is reiteratively hypercyclic since

$$\overline{\mathrm{Bd}}\Big(\bigcup_{n\geq 0}\{k_n+ld:0\leq l\leq n\}\Big)\geq \frac{1}{d}>0.$$

Thank you for your attention.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで