Some remarks regarding ergodic operators

◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ◆ 日 ト

Some remarks regarding ergodic operators

(joint with S. Grivaux)

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三三 - のへで

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Say that an operator $T \in \mathfrak{L}(X)$

Say that an operator $T \in \mathfrak{L}(X)$ is ergodic

Say that an operator $T \in \mathfrak{L}(X)$ is ergodic if it admits an ergodic probability measure

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Say that an operator $T \in \mathfrak{L}(X)$ is ergodic if it admits an ergodic probability measure with full support

Say that an operator $T \in \mathfrak{L}(X)$ is ergodic if it admits an ergodic probability measure with full support ($\mu(V) > 0$ for every open set $V \neq \emptyset$).

Say that an operator $T \in \mathfrak{L}(X)$ is ergodic if it admits an ergodic probability measure with full support ($\mu(V) > 0$ for every open set $V \neq \emptyset$).

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Basic question.

Say that an operator $T \in \mathfrak{L}(X)$ is ergodic if it admits an ergodic probability measure with full support ($\mu(V) > 0$ for every open set $V \neq \emptyset$).

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Basic question. How can we see

Say that an operator $T \in \mathfrak{L}(X)$ is ergodic if it admits an ergodic probability measure with full support ($\mu(V) > 0$ for every open set $V \neq \emptyset$).

Basic question. How can we *see* that an operator is or is not ergodic?

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

1. Ergodicity and frequent hypercyclicity

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Recall that an operator $T \in \mathfrak{L}(X)$ is frequently hypercyclic

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

for every $V \subseteq X$ open $\neq \emptyset$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三三 - のへぐ

 $\underline{\operatorname{dens}} \ \mathcal{N}_{\mathcal{T}}(x_0, V) > 0 \qquad \text{for every } V \subseteq X \text{ open } \neq \emptyset$

 $\underline{\operatorname{dens}} \ \mathcal{N}_{\mathcal{T}}(x_0, V) > 0 \qquad \text{for every } V \subseteq X \text{ open } \neq \emptyset$

 $ergodic \implies$ frequently hypercyclic

 $\underline{\operatorname{dens}}\;\mathcal{N}_{\mathcal{T}}(x_0,V)>0\qquad\text{for every }V\subseteq X\;\text{open}\neq\emptyset$

 $ergodic \implies$ frequently hypercyclic

(If μ is an ergodic measure for T with full support,

 $\underline{\operatorname{dens}} \ \mathcal{N}_{\mathcal{T}}(x_0, V) > 0 \qquad \text{for every } V \subseteq X \text{ open } \neq \emptyset$

 $ergodic \implies$ frequently hypercyclic

(If μ is an ergodic measure for T with full support, then μ -almost every $x_0 \in X$ satisfies: dens $\mathcal{N}_T(x_0, V) \ge \mu(V) > 0$ for every open $V \neq \emptyset$.

 $\underline{\operatorname{dens}} \ \mathcal{N}_{\mathcal{T}}(x_0, V) > 0 \qquad \text{for every } V \subseteq X \text{ open } \neq \emptyset$

 $ergodic \implies$ frequently hypercyclic

(If μ is an ergodic measure for T with full support, then μ -almost every $x_0 \in X$ satisfies: dens $\mathcal{N}_T(x_0, V) \ge \mu(V) > 0$ for every open $V \neq \emptyset$. Follows from the pointwise ergodic theorem.)

Say that $T \in \mathfrak{L}(X)$ is fffrequently hypercyclic

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

for every *V* open $\neq \emptyset$

$$\mathcal{N}_{\mathcal{T}}(x_0, V)$$
 for every V open $eq \emptyset$

$$\mathcal{N}_{\mathcal{T}}(x_0, V) - r$$
 for every V open $\neq \emptyset$

$$\bigcup_{r=0}^{N} (\mathcal{N}_{\mathcal{T}}(x_0, V) - r) \quad \text{for every } V \text{ open } \neq \emptyset$$

$$\underline{\operatorname{dens}} \bigcup_{r=0}^{N} \left(\mathcal{N}_{T}(x_{0}, V) - r \right) \qquad \text{for every } V \text{ open } \neq \emptyset$$

$$\lim_{N\to\infty} \underline{\mathrm{dens}} \, \bigcup_{r=0}^N \left(\mathcal{N}_T(x_0, V) - r \right)$$

for every *V* open $\neq \emptyset$

$$\lim_{N \to \infty} \underline{\operatorname{dens}} \bigcup_{r=0}^{N} (\mathcal{N}_{T}(x_{0}, V) - r) = 1 \quad \text{for every } V \text{ open } \neq \emptyset$$

$$\lim_{N \to \infty} \underline{\operatorname{dens}} \bigcup_{r=0}^{N} (\mathcal{N}_{\mathcal{T}}(x_0, V) - r) = 1 \quad \text{for every } V \text{ open } \neq \emptyset$$

 $\mathsf{FFFHC} \Longrightarrow \mathsf{FHC}$

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$\lim_{N \to \infty} \underline{\operatorname{dens}} \bigcup_{r=0}^{N} (\mathcal{N}_{\mathcal{T}}(x_0, V) - r) = 1 \quad \text{for every } V \text{ open } \neq \emptyset$$

 $FFFHC \Longrightarrow FHC$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Theorem 1.

$$\lim_{N \to \infty} \underline{\operatorname{dens}} \bigcup_{r=0}^{N} (\mathcal{N}_{\mathcal{T}}(x_0, V) - r) = 1 \quad \text{for every } V \text{ open } \neq \emptyset$$

$$\mathsf{FFFHC} \Longrightarrow \mathsf{FHC}$$

Theorem 1. Assume that X is a reflexive Banach space

$$\lim_{N \to \infty} \underline{\operatorname{dens}} \bigcup_{r=0}^{N} (\mathcal{N}_{T}(x_{0}, V) - r) = 1 \quad \text{for every } V \text{ open } \neq \emptyset$$

$$\mathsf{EFEHC} \longrightarrow \mathsf{EHC}$$

Theorem 1. Assume that X is a reflexive Banach space and that $T \in \mathfrak{L}(X)$ is invertible.

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

$$\lim_{N \to \infty} \underline{\operatorname{dens}} \bigcup_{r=0}^{N} (\mathcal{N}_{\mathcal{T}}(x_0, V) - r) = 1 \quad \text{for every } V \text{ open } \neq \emptyset$$

$$\mathsf{FFFHC} \Longrightarrow \mathsf{FHC}$$

Theorem 1. Assume that X is a reflexive Banach space and that $T \in \mathfrak{L}(X)$ is invertible. Then,

$$\lim_{N \to \infty} \underline{\operatorname{dens}} \bigcup_{r=0}^{N} (\mathcal{N}_{\mathcal{T}}(x_0, V) - r) = 1 \quad \text{for every } V \text{ open } \neq \emptyset$$

$$\mathsf{FFFHC} \Longrightarrow \mathsf{FHC}$$

Theorem 1. Assume that X is a reflexive Banach space and that $T \in \mathfrak{L}(X)$ is invertible. Then, T is ergodic

$$\lim_{N \to \infty} \underline{\operatorname{dens}} \bigcup_{r=0}^{N} (\mathcal{N}_{\mathcal{T}}(x_0, V) - r) = 1 \quad \text{for every } V \text{ open } \neq \emptyset$$

$$\mathsf{FFFHC} \Longrightarrow \mathsf{FHC}$$

Theorem 1. Assume that X is a reflexive Banach space and that $T \in \mathfrak{L}(X)$ is invertible. Then, T is ergodic if and only it is fffrequently hypercyclic.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー のの⊙
$$\lim_{N \to \infty} \underline{\operatorname{dens}} \bigcup_{r=0}^{N} (\mathcal{N}_{\mathcal{T}}(x_0, V) - r) = 1 \quad \text{for every } V \text{ open } \neq \emptyset$$

$$\mathsf{FFFHC} \Longrightarrow \mathsf{FHC}$$

Theorem 1. Assume that X is a reflexive Banach space and that $T \in \mathfrak{L}(X)$ is invertible. Then, T is ergodic if and only it is fffrequently hypercyclic.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト 一 ヨ … の Q ()

Remark 1.

$$\lim_{N \to \infty} \underline{\operatorname{dens}} \bigcup_{r=0}^{N} (\mathcal{N}_{\mathcal{T}}(x_0, V) - r) = 1 \quad \text{for every } V \text{ open } \neq \emptyset$$

$$\mathsf{FFFHC} \Longrightarrow \mathsf{FHC}$$

Theorem 1. Assume that X is a reflexive Banach space and that $T \in \mathfrak{L}(X)$ is invertible. Then, T is ergodic if and only it is fffrequently hypercyclic.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト 一 ヨ … の Q ()

Remark 1. Not very "effective":

$$\lim_{N \to \infty} \underline{\operatorname{dens}} \bigcup_{r=0}^{N} (\mathcal{N}_{\mathcal{T}}(x_0, V) - r) = 1 \quad \text{for every } V \text{ open } \neq \emptyset$$

$$\mathsf{FFFHC} \Longrightarrow \mathsf{FHC}$$

Theorem 1. Assume that X is a reflexive Banach space and that $T \in \mathfrak{L}(X)$ is invertible. Then, T is ergodic if and only it is fffrequently hypercyclic.

Remark 1. Not very "effective": how to check fffrequent hypercyclicity??

$$\lim_{N \to \infty} \underline{\operatorname{dens}} \bigcup_{r=0}^{N} (\mathcal{N}_{\mathcal{T}}(x_0, V) - r) = 1 \quad \text{for every } V \text{ open } \neq \emptyset$$

$$\mathsf{FFFHC} \Longrightarrow \mathsf{FHC}$$

Theorem 1. Assume that X is a reflexive Banach space and that $T \in \mathfrak{L}(X)$ is invertible. Then, T is ergodic if and only it is fffrequently hypercyclic.

Remark 1. Not very "effective": how to check fffrequent hypercyclicity?? Remark 2.

$$\lim_{N \to \infty} \underline{\operatorname{dens}} \bigcup_{r=0}^{N} (\mathcal{N}_{\mathcal{T}}(x_0, V) - r) = 1 \quad \text{for every } V \text{ open } \neq \emptyset$$

$$\mathsf{FFFHC} \Longrightarrow \mathsf{FHC}$$

Theorem 1. Assume that X is a reflexive Banach space and that $T \in \mathfrak{L}(X)$ is invertible. Then, T is ergodic if and only it is fffrequently hypercyclic.

Remark 1. Not very "effective": how to check fffrequent hypercyclicity?? **Remark 2.** If T is "just" frequently hypercyclic,

$$\lim_{N \to \infty} \underline{\operatorname{dens}} \bigcup_{r=0}^{N} (\mathcal{N}_{T}(x_{0}, V) - r) = 1 \quad \text{for every } V \text{ open } \neq \emptyset$$

$$\mathsf{EFEHC} \longrightarrow \mathsf{EHC}$$

Theorem 1. Assume that X is a reflexive Banach space and that $T \in \mathfrak{L}(X)$ is invertible. Then, T is ergodic if and only it is fffrequently hypercyclic.

Remark 1. Not very "effective": how to check fffrequent hypercyclicity?? **Remark 2.** If T is "just" frequently hypercyclic, not necessarily invertible,

$$\lim_{N \to \infty} \underline{\operatorname{dens}} \bigcup_{r=0}^{N} (\mathcal{N}_{T}(x_{0}, V) - r) = 1 \quad \text{for every } V \text{ open } \neq \emptyset$$

$$\mathsf{EFEHC} \longrightarrow \mathsf{EHC}$$

Theorem 1. Assume that X is a reflexive Banach space and that $T \in \mathfrak{L}(X)$ is invertible. Then, T is ergodic if and only it is fffrequently hypercyclic.

Remark 1. Not very "effective": how to check fffrequent hypercyclicity?? **Remark 2.** If T is "just" frequently hypercyclic, not necessarily invertible, then T admits an invariant measure with full support.

$$\lim_{N \to \infty} \underline{\operatorname{dens}} \bigcup_{r=0}^{N} (\mathcal{N}_{T}(x_{0}, V) - r) = 1 \quad \text{for every } V \text{ open } \neq \emptyset$$

$$\mathsf{EFEHC} \longrightarrow \mathsf{EHC}$$

Theorem 1. Assume that X is a reflexive Banach space and that $T \in \mathfrak{L}(X)$ is invertible. Then, T is ergodic if and only it is fffrequently hypercyclic.

Remark 1. Not very "effective": how to check fffrequent hypercyclicity?? **Remark 2.** If T is "just" frequently hypercyclic, not necessarily invertible, then T admits an invariant measure with full support. In fact,

$$\lim_{N \to \infty} \underline{\operatorname{dens}} \bigcup_{r=0}^{N} (\mathcal{N}_{T}(x_{0}, V) - r) = 1 \quad \text{for every } V \text{ open } \neq \emptyset$$

$$\mathsf{EFEHC} \longrightarrow \mathsf{EHC}$$

Theorem 1. Assume that X is a reflexive Banach space and that $T \in \mathfrak{L}(X)$ is invertible. Then, T is ergodic if and only it is fffrequently hypercyclic.

Remark 1. Not very "effective": how to check fffrequent hypercyclicity?? **Remark 2.** If T is "just" frequently hypercyclic, not necessarily invertible, then T admits an invariant measure with full support. In fact, T admits such a measure if and only if the following holds:

$$\lim_{N \to \infty} \underline{\operatorname{dens}} \bigcup_{r=0}^{N} (\mathcal{N}_{T}(x_{0}, V) - r) = 1 \quad \text{for every } V \text{ open } \neq \emptyset$$

$$\mathsf{EFEHC} \longrightarrow \mathsf{EHC}$$

Theorem 1. Assume that X is a reflexive Banach space and that $T \in \mathfrak{L}(X)$ is invertible. Then, T is ergodic if and only it is fffrequently hypercyclic.

Remark 1. Not very "effective": how to check fffrequent hypercyclicity?? **Remark 2.** If T is "just" frequently hypercyclic, not necessarily invertible, then T admits an invariant measure with full support. In fact, T admits such a measure if and only if the following holds: for every open set $V \neq \emptyset$,

$$\lim_{N \to \infty} \underline{\operatorname{dens}} \bigcup_{r=0}^{N} (\mathcal{N}_{T}(x_{0}, V) - r) = 1 \quad \text{for every } V \text{ open } \neq \emptyset$$

$$\mathsf{EFEHC} \longrightarrow \mathsf{EHC}$$

Theorem 1. Assume that X is a reflexive Banach space and that $T \in \mathfrak{L}(X)$ is invertible. Then, T is ergodic if and only it is fffrequently hypercyclic.

Remark 1. Not very "effective": how to check fffrequent hypercyclicity?? **Remark 2.** If T is "just" frequently hypercyclic, not necessarily invertible, then T admits an invariant measure with full support. In fact, T admits such a measure if and only if the following holds: for every open set $V \neq \emptyset$, one can find $x_V \in X$

$$\lim_{N \to \infty} \underline{\operatorname{dens}} \bigcup_{r=0}^{N} (\mathcal{N}_{T}(x_{0}, V) - r) = 1 \quad \text{for every } V \text{ open } \neq \emptyset$$

$$\mathsf{EFEHC} \longrightarrow \mathsf{EHC}$$

Theorem 1. Assume that X is a reflexive Banach space and that $T \in \mathfrak{L}(X)$ is invertible. Then, T is ergodic if and only it is fffrequently hypercyclic.

Remark 1. Not very "effective": how to check fffrequent hypercyclicity?? **Remark 2.** If *T* is "just" frequently hypercyclic, not necessarily invertible, then *T* admits an invariant measure with full support. In fact, *T* admits such a measure if and only if the following holds: for every open set $V \neq \emptyset$, one can find $x_V \in X$ such that dens $\mathcal{N}_T(x_V, V) > 0$;

$$\lim_{N \to \infty} \underline{\operatorname{dens}} \bigcup_{r=0}^{N} (\mathcal{N}_{\mathcal{T}}(x_0, V) - r) = 1 \quad \text{for every } V \text{ open } \neq \emptyset$$

$$\mathsf{FFFHC} \Longrightarrow \mathsf{FHC}$$

Theorem 1. Assume that X is a reflexive Banach space and that $T \in \mathfrak{L}(X)$ is invertible. Then, T is ergodic if and only it is fffrequently hypercyclic.

Remark 1. Not very "effective": how to check fffrequent hypercyclicity?? **Remark 2.** If T is "just" frequently hypercyclic, not necessarily invertible, then T admits an invariant measure with full support. In fact, T admits such a measure if and only if the following holds: for every open set $V \neq \emptyset$, one can find $x_V \in X$ such that dens $\mathcal{N}_T(x_V, V) > 0$; and one can replace dens by dens.

$$\lim_{N \to \infty} \underline{\operatorname{dens}} \bigcup_{r=0}^{N} (\mathcal{N}_{\mathcal{T}}(x_0, V) - r) = 1 \quad \text{for every } V \text{ open } \neq \emptyset$$

$$\mathsf{FFFHC} \Longrightarrow \mathsf{FHC}$$

Theorem 1. Assume that X is a reflexive Banach space and that $T \in \mathfrak{L}(X)$ is invertible. Then, T is ergodic if and only it is fffrequently hypercyclic.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト 一 ヨ … の Q ()

2. Ergodicity and unimodular eigenvectors

A unimodular eigenvector for $T \in \mathfrak{L}(X)$

A unimodular eigenvector for $T \in \mathfrak{L}(X)$ is an eigenvector x whose eigenvalue has modulus 1.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

A unimodular eigenvector for $T \in \mathfrak{L}(X)$ is an eigenvector x whose eigenvalue has modulus 1.

{unimodular eigenvectors for T}

・ロト・「「「・」」・ 「」・ 「」・ うくぐ

A unimodular eigenvector for $T \in \mathfrak{L}(X)$ is an eigenvector x whose eigenvalue has modulus 1.

 $\mathcal{E}(T) := \{ unimodular eigenvectors for T \}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三三 - のへで

A unimodular eigenvector for $T \in \mathfrak{L}(X)$ is an eigenvector x whose eigenvalue has modulus 1.

$$\mathcal{E}(\mathcal{T}) := \{ unimodular eigenvectors for \mathcal{T} \}$$

eigenvalue of $x \in \mathcal{E}(T)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三三 - のへで

A unimodular eigenvector for $T \in \mathfrak{L}(X)$ is an eigenvector x whose eigenvalue has modulus 1.

$$\mathcal{E}(T) := \{ unimodular eigenvectors for T \}$$

$$\lambda(x) :=$$
 eigenvalue of $x \in \mathcal{E}(T)$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Say that $\mathcal{E}(T)$ is perfectly spanning

Say that $\mathcal{E}(T)$ is perfectly spanning if the following holds:

 $\{x \in \mathcal{E}(T); \lambda(x) \notin D\}$

 $\overline{\operatorname{span}}\left\{x\in\mathcal{E}(T);\ \lambda(x)\not\in D\right\}$

$$\overline{\operatorname{span}}\left\{x\in\mathcal{E}(T);\;\lambda(x)\notin D\right\}=X$$

$$\overline{\operatorname{span}}\left\{x\in\mathcal{E}(T);\;\lambda(x)\notin D\right\}=X$$

Theorem 2.

$$\overline{\operatorname{span}}\left\{x\in\mathcal{E}(T);\;\lambda(x)\notin D\right\}=X$$

Theorem 2. If $\mathcal{E}(T)$ is perfectly spanning,

$$\overline{\operatorname{span}}\left\{x\in\mathcal{E}(T);\;\lambda(x)\notin D\right\}=X$$

Theorem 2. If $\mathcal{E}(T)$ is perfectly spanning, then T is ergodic.

$$\overline{\operatorname{span}}\left\{x\in\mathcal{E}(T);\;\lambda(x)\notin D\right\}=X$$

Theorem 2. If $\mathcal{E}(T)$ is perfectly spanning, then T is ergodic.

Remark 1.

$$\overline{\operatorname{span}}\left\{x\in\mathcal{E}(T);\;\lambda(x)\notin D\right\}=X$$

Theorem 2. If $\mathcal{E}(T)$ is perfectly spanning, then T is ergodic.

Remark 1. In fact,

$$\overline{\operatorname{span}}\left\{x\in\mathcal{E}(T);\;\lambda(x)\notin D\right\}=X$$

Theorem 2. If $\mathcal{E}(T)$ is perfectly spanning, then T is ergodic.

Remark 1. In fact, one can find a Gaussian ergodic measure with full support

<ロト 4 目 ト 4 日 ト 4 日 ト 1 日 9 9 9 9</p>

$$\overline{\operatorname{span}}\left\{x\in\mathcal{E}(T);\;\lambda(x)\notin D\right\}=X$$

Theorem 2. If $\mathcal{E}(T)$ is perfectly spanning, then T is ergodic.

Remark 1. In fact, one can find a Gaussian ergodic measure with full support (if the space X is locally convex).

$$\overline{\operatorname{span}}\left\{x\in\mathcal{E}(T);\ \lambda(x)\notin D\right\}=X$$

Theorem 2. If $\mathcal{E}(T)$ is perfectly spanning, then T is ergodic.

Remark 1. In fact, one can find a Gaussian ergodic measure with full support (if the space X is locally convex). There is also a similar result for mixing
$$\overline{\operatorname{span}}\left\{x\in\mathcal{E}(T);\ \lambda(x)\notin D\right\}=X$$

Theorem 2. If $\mathcal{E}(T)$ is perfectly spanning, then T is ergodic.

Remark 1. In fact, one can find a Gaussian ergodic measure with full support (if the space X is locally convex). There is also a similar result for mixing (Bayart-M 2014).

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$\overline{\operatorname{span}}\left\{x\in\mathcal{E}(T);\ \lambda(x)\notin D\right\}=X$$

Theorem 2. If $\mathcal{E}(T)$ is perfectly spanning, then T is ergodic.

Remark 1. In fact, one can find a Gaussian ergodic measure with full support (if the space X is locally convex). There is also a similar result for mixing (Bayart-M 2014).

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Remark 2.

$$\overline{\operatorname{span}}\left\{x\in\mathcal{E}(T);\ \lambda(x)\notin D\right\}=X$$

Theorem 2. If $\mathcal{E}(T)$ is perfectly spanning, then T is ergodic.

Remark 1. In fact, one can find a Gaussian ergodic measure with full support (if the space X is locally convex). There is also a similar result for mixing (Bayart-M 2014).

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Remark 2. Very "effective"!

$$\overline{\operatorname{span}}\left\{x\in\mathcal{E}(T);\ \lambda(x)\notin D\right\}=X$$

Theorem 2. If $\mathcal{E}(T)$ is perfectly spanning, then T is ergodic.

Remark 1. In fact, one can find a Gaussian ergodic measure with full support (if the space X is locally convex). There is also a similar result for mixing (Bayart-M 2014).

Remark 2. Very "effective"! (Enough to find a family of unimodular eigenvectors $(e_{\lambda})_{\lambda \in \Lambda}$,

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$\overline{\operatorname{span}}\left\{x\in\mathcal{E}(T);\ \lambda(x)\notin D\right\}=X$$

Theorem 2. If $\mathcal{E}(T)$ is perfectly spanning, then T is ergodic.

Remark 1. In fact, one can find a Gaussian ergodic measure with full support (if the space X is locally convex). There is also a similar result for mixing (Bayart-M 2014).

Remark 2. Very "effective"! (Enough to find a family of unimodular eigenvectors $(e_{\lambda})_{\lambda \in \Lambda}$, where $\Lambda \subseteq \mathbb{T}$ is a perfect set,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\overline{\operatorname{span}}\left\{x\in\mathcal{E}(T);\ \lambda(x)\notin D\right\}=X$$

Theorem 2. If $\mathcal{E}(T)$ is perfectly spanning, then T is ergodic.

Remark 1. In fact, one can find a Gaussian ergodic measure with full support (if the space X is locally convex). There is also a similar result for mixing (Bayart-M 2014).

Remark 2. Very "effective"! (Enough to find a family of unimodular eigenvectors $(e_{\lambda})_{\lambda \in \Lambda}$, where $\Lambda \subseteq \mathbb{T}$ is a perfect set, such that e_{λ} has eigenvalue λ ,

$$\overline{\operatorname{span}}\left\{x\in\mathcal{E}(T);\ \lambda(x)\notin D\right\}=X$$

Theorem 2. If $\mathcal{E}(T)$ is perfectly spanning, then T is ergodic.

Remark 1. In fact, one can find a Gaussian ergodic measure with full support (if the space X is locally convex). There is also a similar result for mixing (Bayart-M 2014).

Remark 2. Very "effective"! (Enough to find a family of unimodular eigenvectors $(e_{\lambda})_{\lambda \in \Lambda}$, where $\Lambda \subseteq \mathbb{T}$ is a perfect set, such that e_{λ} has eigenvalue λ , depends continuously on λ ,

$$\overline{\operatorname{span}}\left\{x\in\mathcal{E}(T);\ \lambda(x)\notin D\right\}=X$$

Theorem 2. If $\mathcal{E}(T)$ is perfectly spanning, then T is ergodic.

Remark 1. In fact, one can find a Gaussian ergodic measure with full support (if the space X is locally convex). There is also a similar result for mixing (Bayart-M 2014).

Remark 2. Very "effective"! (Enough to find a family of unimodular eigenvectors $(e_{\lambda})_{\lambda \in \Lambda}$, where $\Lambda \subseteq \mathbb{T}$ is a perfect set, such that e_{λ} has eigenvalue λ , depends continuously on λ , and $\overline{\text{span}} \{e_{\lambda}; \lambda \in \Lambda\} = X$.)

$$\overline{\operatorname{span}}\left\{x\in\mathcal{E}(T);\;\lambda(x)\notin D\right\}=X$$

Theorem 2. If $\mathcal{E}(T)$ is perfectly spanning, then T is ergodic.

Interlude : perfect spanning vs "chaos"

<□> < @> < E> < E> E 9000

$T \in \mathfrak{L}(X)$

<□> < @> < E> < E> E 9000

$$T\in\mathfrak{L}(X)$$

Fact.

$T \in \mathfrak{L}(X)$

Fact. $\mathcal{E}(T)$ is perfectly spanning

$T \in \mathfrak{L}(X)$

Fact. $\mathcal{E}(T)$ is perfectly spanning if and only if the following holds:

$$T \in \mathfrak{L}(X)$$

Fact. $\mathcal{E}(T)$ is perfectly spanning if and only if the following holds: there exists a set $\mathcal{E} \subseteq \mathcal{E}(T)$

$$T \in \mathfrak{L}(X)$$

Fact. $\mathcal{E}(T)$ is perfectly spanning if and only if the following holds: there exists a set $\mathcal{E} \subseteq \mathcal{E}(T)$ such that $\overline{\text{span}} \mathcal{E} = X$ and,

$$T \in \mathfrak{L}(X)$$

Fact. $\mathcal{E}(T)$ is perfectly spanning if and only if the following holds: there exists a set $\mathcal{E} \subseteq \mathcal{E}(T)$ such that $\overline{\operatorname{span}} \mathcal{E} = X$ and, for any $u \in \mathcal{E}$,

$$T \in \mathfrak{L}(X)$$

Fact. $\mathcal{E}(T)$ is perfectly spanning if and only if the following holds: there exists a set $\mathcal{E} \subseteq \mathcal{E}(T)$ such that $\overline{\operatorname{span}} \mathcal{E} = X$ and, for any $u \in \mathcal{E}$, one can find vectors $v \in \mathcal{E}$ arbitrarily close to u

$$T \in \mathfrak{L}(X)$$

Fact. $\mathcal{E}(T)$ is perfectly spanning if and only if the following holds: there exists a set $\mathcal{E} \subseteq \mathcal{E}(T)$ such that $\overline{\operatorname{span}} \mathcal{E} = X$ and, for any $u \in \mathcal{E}$, one can find vectors $v \in \mathcal{E}$ arbitrarily close to u with $\lambda(v) \neq \lambda(u)$.

$$T \in \mathfrak{L}(X)$$

Fact. $\mathcal{E}(T)$ is perfectly spanning if and only if the following holds: there exists a set $\mathcal{E} \subseteq \mathcal{E}(T)$ such that $\overline{\operatorname{span}} \mathcal{E} = X$ and, for any $u \in \mathcal{E}$, one can find vectors $v \in \mathcal{E}$ arbitrarily close to u with $\lambda(v) \neq \lambda(u)$. In particular,

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$T \in \mathfrak{L}(X)$$

Fact. $\mathcal{E}(T)$ is perfectly spanning if and only if the following holds: there exists a set $\mathcal{E} \subseteq \mathcal{E}(T)$ such that $\overline{\operatorname{span}} \mathcal{E} = X$ and, for any $u \in \mathcal{E}$, one can find vectors $v \in \mathcal{E}$ arbitrarily close to u with $\lambda(v) \neq \lambda(u)$. In particular, this holds if the periodic points of T are dense in X

$$T \in \mathfrak{L}(X)$$

Fact. $\mathcal{E}(T)$ is perfectly spanning if and only if the following holds: there exists a set $\mathcal{E} \subseteq \mathcal{E}(T)$ such that $\overline{\operatorname{span}} \mathcal{E} = X$ and, for any $u \in \mathcal{E}$, one can find vectors $v \in \mathcal{E}$ arbitrarily close to u with $\lambda(v) \neq \lambda(u)$. In particular, this holds if the periodic points of T are dense in X and every periodic eigenvector u

$$T \in \mathfrak{L}(X)$$

$$T \in \mathfrak{L}(X)$$

$$T \in \mathfrak{L}(X)$$

Does not seem to be that strong

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$T \in \mathfrak{L}(X)$$

Does not seem to be that strong

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Tempting "conjecture":

$$T \in \mathfrak{L}(X)$$

Does not seem to be that strong

(日) (日) (日) (日) (日) (日) (日) (日)

Tempting "conjecture": If T is chaotic,

$$T \in \mathfrak{L}(X)$$

Does not seem to be that strong

Tempting "conjecture": If T is chaotic, *i.e.* hypercyclic with a dense set of periodic points,

$$T \in \mathfrak{L}(X)$$

Does not seem to be that strong

Tempting "conjecture": If T is chaotic, *i.e.* hypercyclic with a dense set of periodic points, then $\mathcal{E}(T)$ is perfectly spanning,

$$T \in \mathfrak{L}(X)$$

Does not seem to be that strong

Tempting "conjecture": If T is chaotic, *i.e.* hypercyclic with a dense set of periodic points, then $\mathcal{E}(T)$ is perfectly spanning, so that T is ergodic

$$T \in \mathfrak{L}(X)$$

Does not seem to be that strong

Tempting "conjecture": If T is chaotic, *i.e.* hypercyclic with a dense set of periodic points, then $\mathcal{E}(T)$ is perfectly spanning, so that T is ergodic and hence frequently hypercyclic.

$$T \in \mathfrak{L}(X)$$

Does not seem to be that strong

Tempting "conjecture": If T is chaotic, *i.e.* hypercyclic with a dense set of periodic points, then $\mathcal{E}(T)$ is perfectly spanning, so that T is ergodic and hence frequently hypercyclic. This is false!

$$T \in \mathfrak{L}(X)$$

Does not seem to be that strong

Tempting "conjecture": If T is chaotic, *i.e.* hypercyclic with a dense set of periodic points, then $\mathcal{E}(T)$ is perfectly spanning, so that T is ergodic and hence frequently hypercyclic. This is false! (Menet 2015).

3. A useful parameter

X Banach space

X Banach space

Given a hypercyclic operator $T \in \mathfrak{L}(X)$,
Given a hypercyclic operator $T \in \mathfrak{L}(X)$, define

c(T) :=

Given a hypercyclic operator $T \in \mathfrak{L}(X)$, define

 $c(T) := \overline{\operatorname{dens}} \mathcal{N}_T(x, B_R).$

Given a hypercyclic operator $T \in \mathfrak{L}(X)$, define

$$c(T) := \sup_{x \in HC(T)} \overline{\operatorname{dens}} \, \mathcal{N}_T(x, B_R).$$

Given a hypercyclic operator $T \in \mathfrak{L}(X)$, define

$$c(T) := \sup_{R>0} \sup_{x \in HC(T)} \overline{\mathrm{dens}} \, \mathcal{N}_T(x, B_R).$$

Given a hypercyclic operator $T \in \mathfrak{L}(X)$, define

$$c(T) := \sup_{R>0} \sup_{x \in HC(T)} \overline{\operatorname{dens}} \mathcal{N}_T(x, B_R).$$

• By definition:

Given a hypercyclic operator $T \in \mathfrak{L}(X)$, define

$$c(T) := \sup_{R>0} \sup_{x \in HC(T)} \overline{\mathrm{dens}} \, \mathcal{N}_T(x, B_R).$$

• By definition:

 $c(T) \ge \overline{\text{dens}} \mathcal{N}_T(x, B_R)$ for any R > 0 and all $x \in HC(T)$.

<ロト 4 目 ト 4 日 ト 4 日 ト 1 日 9 9 9 9</p>

Given a hypercyclic operator $T \in \mathfrak{L}(X)$, define

$$c(T) := \sup_{R>0} \sup_{x \in HC(T)} \overline{\mathrm{dens}} \, \mathcal{N}_T(x, B_R).$$

• By definition:

 $c(T) \ge \overline{\text{dens}} \mathcal{N}_T(x, B_R)$ for any R > 0 and all $x \in HC(T)$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• On the other hand,

Given a hypercyclic operator $T \in \mathfrak{L}(X)$, define

$$c(T) := \sup_{R>0} \sup_{x \in HC(T)} \overline{\mathrm{dens}} \, \mathcal{N}_T(x, B_R).$$

• By definition:

 $c(T) \ge \overline{\text{dens}} \mathcal{N}_T(x, B_R)$ for any R > 0 and all $x \in HC(T)$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• On the other hand, one can show

Given a hypercyclic operator $T \in \mathfrak{L}(X)$, define

$$c(T) := \sup_{R>0} \sup_{x \in HC(T)} \overline{\mathrm{dens}} \, \mathcal{N}_T(x, B_R).$$

• By definition:

 $c(T) \ge \overline{\text{dens}} \mathcal{N}_T(x, B_R)$ for any R > 0 and all $x \in HC(T)$.

• On the other hand, one can show that there is a comeager set of vectors $x \in HC(T)$ such that

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Given a hypercyclic operator $T \in \mathfrak{L}(X)$, define

$$c(T) := \sup_{R>0} \sup_{x \in HC(T)} \overline{\mathrm{dens}} \, \mathcal{N}_T(x, B_R).$$

• By definition:

 $c(T) \ge \overline{\text{dens}} \mathcal{N}_T(x, B_R)$ for any R > 0 and all $x \in HC(T)$.

• On the other hand, one can show that there is a comeager set of vectors $x \in HC(T)$ such that

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $\overline{\mathrm{dens}} \, \mathcal{N}_T(x, B_\alpha) = c(T)$

Given a hypercyclic operator $T \in \mathfrak{L}(X)$, define

$$c(T) := \sup_{R>0} \sup_{x \in HC(T)} \overline{\mathrm{dens}} \, \mathcal{N}_T(x, B_R).$$

• By definition:

 $c(T) \ge \overline{\text{dens}} \mathcal{N}_T(x, B_R)$ for any R > 0 and all $x \in HC(T)$.

• On the other hand, one can show that there is a comeager set of vectors $x \in HC(T)$ such that

 $\overline{\mathrm{dens}} \, \mathcal{N}_{\mathcal{T}}(x, B_{\alpha}) = c(\mathcal{T}) \qquad \text{for every } \alpha > 0.$

Given a hypercyclic operator $T \in \mathfrak{L}(X)$, define

$$c(T) := \sup_{R>0} \sup_{x \in HC(T)} \overline{\mathrm{dens}} \, \mathcal{N}_T(x, B_R).$$

• By definition:

 $c(T) \ge \overline{\text{dens}} \mathcal{N}_T(x, B_R)$ for any R > 0 and all $x \in HC(T)$.

• On the other hand, one can show that there is a comeager set of vectors $x \in HC(T)$ such that

$$\overline{\mathrm{dens}} \ \mathcal{N}_{\mathcal{T}}(x, B_{\alpha}) = c(\mathcal{T}) \qquad \text{for every } \alpha > 0.$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Obviously,

Given a hypercyclic operator $T \in \mathfrak{L}(X)$, define

$$c(T) := \sup_{R>0} \sup_{x \in HC(T)} \overline{\mathrm{dens}} \, \mathcal{N}_T(x, B_R).$$

• By definition:

 $c(T) \ge \overline{\text{dens}} \mathcal{N}_T(x, B_R)$ for any R > 0 and all $x \in HC(T)$.

• On the other hand, one can show that there is a comeager set of vectors $x \in HC(T)$ such that

$$\overline{\mathrm{dens}} \ \mathcal{N}_{\mathcal{T}}(x, B_{\alpha}) = c(\mathcal{T}) \qquad \text{for every } \alpha > 0.$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Obviously, if T is frequently hypercyclic,

Given a hypercyclic operator $T \in \mathfrak{L}(X)$, define

$$c(T) := \sup_{R>0} \sup_{x \in HC(T)} \overline{\mathrm{dens}} \, \mathcal{N}_T(x, B_R).$$

• By definition:

 $c(T) \ge \overline{\text{dens}} \mathcal{N}_T(x, B_R)$ for any R > 0 and all $x \in HC(T)$.

• On the other hand, one can show that there is a comeager set of vectors $x \in HC(T)$ such that

$$\overline{\mathrm{dens}} \, \mathcal{N}_{\mathcal{T}}(x, B_{\alpha}) = c(\mathcal{T}) \qquad \text{for every } \alpha > 0.$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Obviously, if T is frequently hypercyclic, then c(T) > 0.

One example of use.

<□> < @> < E> < E> E 9000

$$\overline{\mathrm{dens}} \ \mathcal{N}_{\mathcal{T}}(x, B_1) = c(\mathcal{T}) \quad \text{for every } x \in G$$

$$\overline{\mathrm{dens}} \ \mathcal{N}_{\mathcal{T}}(x, B_1) = c(\mathcal{T}) \quad \text{for every } x \in G$$

Choose an open set $V \neq \emptyset$

$$\overline{\mathrm{dens}} \ \mathcal{N}_{\mathcal{T}}(x, B_1) = c(\mathcal{T}) \quad \text{for every } x \in G$$

Choose an open set $V \neq \emptyset$ such that

$$V \cap B_1 = \emptyset$$
 and $V \subseteq B_2$.

$$\overline{\mathrm{dens}} \ \mathcal{N}_{\mathcal{T}}(x, B_1) = c(\mathcal{T}) \quad \text{for every } x \in G$$

Choose an open set $V \neq \emptyset$ such that

$$V \cap B_1 = \emptyset$$
 and $V \subseteq B_2$.

If $x \in G$, then

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○

$$\overline{\mathrm{dens}} \ \mathcal{N}_{\mathcal{T}}(x, B_1) = c(\mathcal{T}) \quad \text{for every } x \in G$$

Choose an open set $V \neq \emptyset$ such that

 $V \cap B_1 = \emptyset$ and $V \subseteq B_2$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三三 - のへぐ

If $x \in G$, then

 $\overline{\mathrm{dens}} \, \mathcal{N}_T(x, B_2)$

$$\overline{\mathrm{dens}} \ \mathcal{N}_{\mathcal{T}}(x, B_1) = c(\mathcal{T}) \quad \text{for every } x \in G$$

Choose an open set $V \neq \emptyset$ such that

 $V \cap B_1 = \emptyset$ and $V \subseteq B_2$.

If $x \in G$, then

 $\overline{\mathrm{dens}} \, \mathcal{N}_{\mathcal{T}}(x, B_2) \geq \overline{\mathrm{dens}} \, \mathcal{N}_{\mathcal{T}}(x, B_1) + \underline{\mathrm{dens}} \, \mathcal{N}_{\mathcal{T}}(x, V)$

$$\overline{\mathrm{dens}} \ \mathcal{N}_{\mathcal{T}}(x,B_1) = c(\mathcal{T}) \quad \text{for every } x \in G$$

Choose an open set $V \neq \emptyset$ such that

$$V \cap B_1 = \emptyset$$
 and $V \subseteq B_2$.

If $x \in G$, then

$$\overline{\operatorname{dens}} \, \mathcal{N}_{\mathcal{T}}(x, B_2) \geq \underbrace{\overline{\operatorname{dens}} \, \mathcal{N}_{\mathcal{T}}(x, B_1)}_{c(\mathcal{T})} + \underline{\operatorname{dens}} \, \mathcal{N}_{\mathcal{T}}(x, V)$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

$$\overline{\mathrm{dens}} \ \mathcal{N}_{\mathcal{T}}(x, B_1) = c(\mathcal{T}) \quad \text{for every } x \in G$$

Choose an open set $V \neq \emptyset$ such that

$$V \cap B_1 = \emptyset$$
 and $V \subseteq B_2$.

If $x \in G$, then

$$\geq \overline{\operatorname{dens}} \, \mathcal{N}_{\mathcal{T}}(x, B_2) \geq \underbrace{\overline{\operatorname{dens}} \, \mathcal{N}_{\mathcal{T}}(x, B_1)}_{c(\mathcal{T})} + \underline{\operatorname{dens}} \, \mathcal{N}_{\mathcal{T}}(x, V)$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

$$\overline{\mathrm{dens}} \ \mathcal{N}_{\mathcal{T}}(x, B_1) = c(\mathcal{T}) \quad \text{for every } x \in G$$

Choose an open set $V \neq \emptyset$ such that

$$V \cap B_1 = \emptyset$$
 and $V \subseteq B_2$.

If $x \in G$, then

$$c(T) \ge \overline{\operatorname{dens}} \, \mathcal{N}_T(x, B_2) \ge \underbrace{\overline{\operatorname{dens}} \, \mathcal{N}_T(x, B_1)}_{c(T)} + \underline{\operatorname{dens}} \, \mathcal{N}_T(x, V) \,,$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

$$\overline{\mathrm{dens}} \ \mathcal{N}_{\mathcal{T}}(x, B_1) = c(\mathcal{T}) \quad \text{for every } x \in G$$

Choose an open set $V \neq \emptyset$ such that

$$V \cap B_1 = \emptyset$$
 and $V \subseteq B_2$.

If $x \in G$, then

$$c(T) \ge \overline{\operatorname{dens}} \, \mathcal{N}_T(x, B_2) \ge \underbrace{\overline{\operatorname{dens}} \, \mathcal{N}_T(x, B_1)}_{c(T)} + \underline{\operatorname{dens}} \, \mathcal{N}_T(x, V) \,,$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三三 - のへぐ

so that $\underline{\operatorname{dens}} \mathcal{N}_{\mathcal{T}}(x, V) = 0.$

$$\overline{\mathrm{dens}} \ \mathcal{N}_{\mathcal{T}}(x, B_1) = c(\mathcal{T}) \quad \text{for every } x \in G$$

Choose an open set $V \neq \emptyset$ such that

$$V \cap B_1 = \emptyset$$
 and $V \subseteq B_2$.

If $x \in G$, then

$$c(T) \ge \overline{\operatorname{dens}} \, \mathcal{N}_T(x, B_2) \ge \underbrace{\overline{\operatorname{dens}} \, \mathcal{N}_T(x, B_1)}_{c(T)} + \underline{\operatorname{dens}} \, \mathcal{N}_T(x, V) \,,$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三三 - のへぐ

so that dens $\mathcal{N}_{\mathcal{T}}(x, V) = 0$. Hence,

$$\overline{\mathrm{dens}} \ \mathcal{N}_{\mathcal{T}}(x,B_1) = c(\mathcal{T}) \quad \text{for every } x \in G$$

Choose an open set $V \neq \emptyset$ such that

$$V \cap B_1 = \emptyset$$
 and $V \subseteq B_2$.

If $x \in G$, then

$$c(T) \ge \overline{\operatorname{dens}} \, \mathcal{N}_T(x, B_2) \ge \underbrace{\overline{\operatorname{dens}} \, \mathcal{N}_T(x, B_1)}_{c(T)} + \underline{\operatorname{dens}} \, \mathcal{N}_T(x, V) \,,$$

so that dens $\mathcal{N}_{\mathcal{T}}(x, V) = 0$. Hence, no $x \in G$ can be a frequently hypercyclic vector for \mathcal{T} .

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$\overline{\mathrm{dens}} \ \mathcal{N}_{\mathcal{T}}(x, B_1) = c(\mathcal{T}) \quad \text{for every } x \in G$$

Choose an open set $V \neq \emptyset$ such that

$$V \cap B_1 = \emptyset$$
 and $V \subseteq B_2$.

If $x \in G$, then

$$c(T) \ge \overline{\operatorname{dens}} \, \mathcal{N}_T(x, B_2) \ge \underbrace{\overline{\operatorname{dens}} \, \mathcal{N}_T(x, B_1)}_{c(T)} + \underline{\operatorname{dens}} \, \mathcal{N}_T(x, V) \,,$$

so that dens $\mathcal{N}_{\mathcal{T}}(x, V) = 0$. Hence, no $x \in G$ can be a frequently hypercyclic vector for \mathcal{T} . In particular:

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$\overline{\mathrm{dens}} \ \mathcal{N}_{\mathcal{T}}(x, B_1) = c(\mathcal{T}) \quad \text{for every } x \in G$$

Choose an open set $V \neq \emptyset$ such that

$$V \cap B_1 = \emptyset$$
 and $V \subseteq B_2$.

If $x \in G$, then

$$c(T) \ge \overline{\operatorname{dens}} \, \mathcal{N}_T(x, B_2) \ge \underbrace{\overline{\operatorname{dens}} \, \mathcal{N}_T(x, B_1)}_{c(T)} + \underline{\operatorname{dens}} \, \mathcal{N}_T(x, V),$$

so that dens $\mathcal{N}_T(x, V) = 0$. Hence, no $x \in G$ can be a frequently hypercyclic vector for T. In particular: the set of all frequently hypercyclic vectors for T is always meager in X.

dens
$$\mathcal{N}_{\mathcal{T}}(x, B_1) = c(\mathcal{T})$$
 for every $x \in G$

Choose an open set $V \neq \emptyset$ such that

$$V \cap B_1 = \emptyset$$
 and $V \subseteq B_2$.

If $x \in G$, then

$$c(T) \ge \overline{\operatorname{dens}} \, \mathcal{N}_T(x, B_2) \ge \underbrace{\overline{\operatorname{dens}} \, \mathcal{N}_T(x, B_1)}_{c(T)} + \underline{\operatorname{dens}} \, \mathcal{N}_T(x, V) \,,$$

so that dens $\mathcal{N}_T(x, V) = 0$. Hence, no $x \in G$ can be a frequently hypercyclic vector for T. In particular: the set of all frequently hypercyclic vectors for T is always meager in X. (Moothathu 2013, Bayart-Ruzsa 2014, ...)

- ロ ト - 4 日 ト - 4 日 ト - 4 日 ト - 9 へ ()

Lemma.

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Lemma. For any hypercyclic operator $T \in \mathfrak{L}(X)$,

Lemma. For any hypercyclic operator $T \in \mathfrak{L}(X)$, there is a comeager set of vectors $x \in X$

Lemma. For any hypercyclic operator $T \in \mathfrak{L}(X)$, there is a comeager set of vectors $x \in X$ such that $||T^{i}(x)|| \to 0$ as $i \to \infty$

Lemma. For any hypercyclic operator $T \in \mathfrak{L}(X)$, there is a comeager set of vectors $x \in X$ such that $||T^i(x)|| \to 0$ as $i \to \infty$ along some set $D_x \subseteq \mathbb{N}$ with dens $D_x \ge c(T)$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>
Theorem 3.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem 3. If $T \in \mathfrak{L}(X)$ is ergodic,

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem 3. If $T \in \mathfrak{L}(X)$ is ergodic, then c(T) = 1.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem 3. If $T \in \mathfrak{L}(X)$ is ergodic, then c(T) = 1. Corollary.

Theorem 3. If $T \in \mathfrak{L}(X)$ is ergodic, then c(T) = 1.

Corollary. There exist frequently hypercyclic operators on $X = c_0$ which are not ergodic.

Theorem 3. If $T \in \mathfrak{L}(X)$ is ergodic, then c(T) = 1.

Corollary. There exist frequently hypercyclic operators on $X = c_0$ which are not ergodic.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Remark 1.

Theorem 3. If $T \in \mathfrak{L}(X)$ is ergodic, then c(T) = 1.

Corollary. There exist frequently hypercyclic operators on $X = c_0$ which are not ergodic.

(日) (日) (日) (日) (日) (日) (日) (日)

Remark 1. Not known if such operators exist on other spaces

Theorem 3. If $T \in \mathfrak{L}(X)$ is ergodic, then c(T) = 1.

Corollary. There exist frequently hypercyclic operators on $X = c_0$ which are not ergodic.

Remark 1. Not known if such operators exist on other spaces (in particular, if this can happen on a reflexive Banach space).

(日) (日) (日) (日) (日) (日) (日) (日)

Theorem 3. If $T \in \mathfrak{L}(X)$ is ergodic, then c(T) = 1.

Corollary. There exist frequently hypercyclic operators on $X = c_0$ which are not ergodic.

Remark 1. Not known if such operators exist on other spaces (in particular, if this can happen on a reflexive Banach space).

(日) (日) (日) (日) (日) (日) (日) (日)

Remark 2.

Theorem 3. If $T \in \mathfrak{L}(X)$ is ergodic, then c(T) = 1.

Corollary. There exist frequently hypercyclic operators on $X = c_0$ which are not ergodic.

Remark 1. Not known if such operators exist on other spaces (in particular, if this can happen on a reflexive Banach space).

Remark 2. Not known if there exist frequently hypercyclic operators admitting no invariant measure with full support,

Theorem 3. If $T \in \mathfrak{L}(X)$ is ergodic, then c(T) = 1.

Corollary. There exist frequently hypercyclic operators on $X = c_0$ which are not ergodic.

Remark 1. Not known if such operators exist on other spaces (in particular, if this can happen on a reflexive Banach space).

Remark 2. Not known if there exist frequently hypercyclic operators admitting no invariant measure with full support, ergodic or not.

Theorem 3. If $T \in \mathfrak{L}(X)$ is ergodic, then c(T) = 1.

Corollary. There exist frequently hypercyclic operators on $X = c_0$ which are not ergodic.

Remark 1. Not known if such operators exist on other spaces (in particular, if this can happen on a reflexive Banach space).

Remark 2. Not known if there exist frequently hypercyclic operators admitting no invariant measure with full support, ergodic or not. (This cannot happen on a reflexive Banach space.)

Q1.

Q1. On a reflexive space,

Q1. On a reflexive space, does FHC imply ergodic?

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Q1. On a reflexive space, does FHC imply ergodic?Q2.

Q1. On a reflexive space, does FHC imply ergodic?

 $\ensuremath{\mathbf{Q2.}}$ Is there a FHC operator which admits no invariant measure with full support,

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三三 - のへぐ

Q1. On a reflexive space, does FHC imply ergodic?

Q2. Is there a FHC operator which admits no invariant measure with full support, or even no invariant measure at all (apart from δ_0)?

- Q1. On a reflexive space, does FHC imply ergodic?
- **Q2.** Is there a FHC operator which admits no invariant measure with full support, or even no invariant measure at all (apart from δ_0)?

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Q3.

- Q1. On a reflexive space, does FHC imply ergodic?
- **Q2.** Is there a FHC operator which admits no invariant measure with full support, or even no invariant measure at all (apart from δ_0)?
- Q3. Is ergodicity equivalent to ergodicity "in the Gaussian sense"?

- Q1. On a reflexive space, does FHC imply ergodic?
- **Q2.** Is there a FHC operator which admits no invariant measure with full support, or even no invariant measure at all (apart from δ_0)?
- Q3. Is ergodicity equivalent to ergodicity "in the Gaussian sense"?Q4.

- Q1. On a reflexive space, does FHC imply ergodic?
- **Q2.** Is there a FHC operator which admits no invariant measure with full support, or even no invariant measure at all (apart from δ_0)?
- Q3. Is ergodicity equivalent to ergodicity "in the Gaussian sense"?
- **Q4.** Does there exist a Hilbert space ergodic operator with no eigenvalues?

- Q1. On a reflexive space, does FHC imply ergodic?
- **Q2.** Is there a FHC operator which admits no invariant measure with full support, or even no invariant measure at all (apart from δ_0)?
- Q3. Is ergodicity equivalent to ergodicity "in the Gaussian sense"?
- **Q4.** Does there exist a Hilbert space ergodic operator with no eigenvalues?

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Q5.

- Q1. On a reflexive space, does FHC imply ergodic?
- **Q2.** Is there a FHC operator which admits no invariant measure with full support, or even no invariant measure at all (apart from δ_0)?
- Q3. Is ergodicity equivalent to ergodicity "in the Gaussian sense"?
- **Q4.** Does there exist a Hilbert space ergodic operator with no eigenvalues?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Q5. Assume that $T \in \mathfrak{L}(X)$ is such that $HC(T) = X \setminus \{0\}$.

- Q1. On a reflexive space, does FHC imply ergodic?
- **Q2.** Is there a FHC operator which admits no invariant measure with full support, or even no invariant measure at all (apart from δ_0)?
- Q3. Is ergodicity equivalent to ergodicity "in the Gaussian sense"?
- **Q4.** Does there exist a Hilbert space ergodic operator with no eigenvalues?

Q5. Assume that $T \in \mathfrak{L}(X)$ is such that $HC(T) = X \setminus \{0\}$. Can T be FHC?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Q1. On a reflexive space, does FHC imply ergodic?
- **Q2.** Is there a FHC operator which admits no invariant measure with full support, or even no invariant measure at all (apart from δ_0)?
- Q3. Is ergodicity equivalent to ergodicity "in the Gaussian sense"?
- **Q4.** Does there exist a Hilbert space ergodic operator with no eigenvalues?

Q5. Assume that $T \in \mathfrak{L}(X)$ is such that $HC(T) = X \setminus \{0\}$. Can T be FHC? Can T be ergodic??

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶