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Basic question. How can we see that an operator is or is not
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1. Ergodicity and frequent hypercyclicity



Recall that an operator T ∈ L(X ) is frequently hypercyclic

if there
exists x0 ∈ X such that

dens NT (x0,V ) > 0 for every V ⊆ X open 6= ∅

ergodic =⇒ frequently hypercyclic

(If µ is an ergodic measure for T with full support, then µ-almost every

x0 ∈ X satisfies: dens NT (x0,V ) ≥ µ(V ) > 0 for every open V 6= ∅.
Follows from the pointwise ergodic theorem.)
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Say that T ∈ L(X ) is fffrequently hypercyclic

if there exists x0 ∈ X
such that

lim
N→∞

dens
N⋃
r=0

(
NT (x0,V )− r

)
= 1 for every V open 6= ∅

FFFHC =⇒ FHC

Theorem 1. Assume that X is a reflexive Banach space and that
T ∈ L(X ) is invertible. Then, T is ergodic if and only it is fffre-
quently hypercyclic.

Remark 1. Not very “effective”: how to check fffrequent hypercyclicity??

Remark 2. If T is “just” frequently hypercyclic, not necessarily invertible,

then T admits an invariant measure with full support. In fact, T admits

such a measure if and only if the following holds: for every open set V 6= ∅,
one can find xV ∈ X such that dens NT (xV ,V ) > 0; and one can replace

dens by dens.
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2. Ergodicity and unimodular eigenvectors



X complex Polish tvs

A unimodular eigenvector for T ∈ L(X ) is an eigenvector x whose
eigenvalue has modulus 1.

E(T ) := {unimodular eigenvectors for T}

λ(x) := eigenvalue of x ∈ E(T )
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Say that E(T ) is perfectly spanning

if the following holds: for every
countable set D ⊆ T,

span
{

x ∈ E(T ); λ(x) 6∈ D
}

= X

Theorem 2. If E(T ) is perfectly spanning, then T is ergodic.

Remark 1. In fact, one can find a Gaussian ergodic measure with full
support (if the space X is locally convex). There is also a similar result for
mixing (Bayart-M 2014).

Remark 2. Very “effective”! (Enough to find a family of unimodular

eigenvectors (eλ)λ∈Λ, where Λ ⊆ T is a perfect set, such that eλ has

eigenvalue λ, depends continuously on λ, and span {eλ; λ ∈ Λ} = X .)
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Interlude : perfect spanning vs “chaos”



T ∈ L(X )

Fact. E(T ) is perfectly spanning if and only if the following holds:
there exists a set E ⊆ E(T ) such that span E = X and, for any
u ∈ E , one can find vectors v ∈ E arbitrarily close to u with λ(v) 6=
λ(u). In particular, this holds if the periodic points of T are dense in
X and every periodic eigenvector u can be approximated by periodic
eigenvectors v with λ(v) 6= λ(u).

Does not seem to be that strong

Tempting “conjecture”: If T is chaotic, i.e. hypercyclic with a
dense set of periodic points, then E(T ) is perfectly spanning, so
that T is ergodic and hence frequently hypercyclic. This is false!
(Menet 2015).
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3. A useful parameter



X Banach space

Given a hypercyclic operator T ∈ L(X ), define

c(T ) := sup
R>0

sup
x∈HC(T )

dens NT (x ,BR) .

• By definition:

c(T ) ≥ dens NT (x ,BR) for any R > 0 and all x ∈ HC (T ).

• On the other hand, one can show that there is a comeager set of vectors
x ∈ HC (T ) such that

dens NT (x ,Bα) = c(T ) for every α > 0.

• Obviously, if T is frequently hypercyclic, then c(T ) > 0.
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One example of use.

Let G ⊆ HC (T ) be a comeager set such
that

dens NT (x ,B1) = c(T ) for every x ∈ G

Choose an open set V 6= ∅ such that

V ∩ B1 = ∅ and V ⊆ B2 .

If x ∈ G , then

c(T )≥dens NT (x ,B2) ≥ dens NT (x ,B1) + dens NT (x ,V ) ,

so that dens NT (x ,V ) = 0. Hence, no x ∈ G can be a frequently
hypercyclic vector for T . In particular: the set of all frequently
hypercyclic vectors for T is always meager in X (Moothathu 2013,

Bayart-Ruzsa 2014).
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Lemma.

For any hypercyclic operator T ∈ L(X ), there is a comeager

set of vectors x ∈ X such that ‖T i (x)‖ → 0 as i → ∞ along some set

Dx ⊆ N with densDx ≥ c(T ).

Theorem 3. If T ∈ L(X ) is ergodic, then c(T ) = 1.

Corollary. There exist frequently hypercyclic operators on X = c0

which are not ergodic.

Remark 1. Not known if such operators exist on other spaces (in partic-
ular, if this can happen on a reflexive Banach space).

Remark 2. Not known if there exist frequently hypercyclic operators ad-

mitting no invariant measure with full support, ergodic or not. (This cannot

happen on a reflexive Banach space.)
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Some questions

Q1. On a reflexive space, does FHC imply ergodic?

Q2. Is there a FHC operator which admits no invariant measure
with full support, or even no invariant measure at all (apart from δ0)?

Q3. Is ergodicity equivalent to ergodicity “in the Gaussian sense”?

Q4. Does there exist a Hilbert space ergodic operator with no
eigenvalues?

Q5. Assume that T ∈ L(X ) is such that HC (T ) = X \ {0}. Can
T be FHC? Can T be ergodic??
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