Some Important Theorems

Markus Haase

Analysis TU Delft/CAU Kiel

The topological case

Theorem 1. K, L compact, $T : C(K) \to C(L)$ linear, $T\mathbf{1} = \mathbf{1}$. Then the following assertions are equivalent:

- (i) T multiplicative;
- (ii) T lattice homomorphism;

(iii) T extreme point of $\{S : C(K) \rightarrow C(L) \mid S \ge 0, S\mathbf{1} = \mathbf{1}\};$

(iv) $T = T_{\varphi}$ for some $\varphi: L \to K$.

In this case, φ is unique.

Von Neumann's theorem

Theorem 2. X, Y standard, $T : L^1(X) \to L^1(Y)$ Markov Then the following assertions are equivalent:

(i) T multiplicative on $L^{\infty}(X)$;

(ii) T lattice homomorphism, i.e., Markov embedding;

(iii) $T = T_{\varphi}$ for some measurable $\varphi: Y \to X$.

In this case, φ is essentially unique.

For a (nice!) proof see [EFHN, Chapter 13 and Appendix F].

Topological Models

Theorem 3. $(L^1(X); T)$ abstract mps, $\mathbf{1} \in A \subseteq L^{\infty}(X)$ a *T*-invariant *C**-subalgebra.

 \Rightarrow There exist

4UDelft

- 1) a topological system $(K; \varphi)$,
- 2) a φ -invariant probability measure μ with full support,
- 3) a Markov embedding $\Phi: L^1(K, \mu) \to L^1(X)$,

such that $\Phi T_{\varphi} = T \Phi$ and $\Phi(C(K)) = A$.

Proof: Gelfand-Naimark, see [EFHN, Chapter 12].

NB: $ran(\Phi) = cl_{L^1}(A)$, so Φ is an isomorphism iff A dense in $L^1(X)$.

< D > < B > < E > < E >

Abramov's theorem

Theorem 4 (Representation). $\mathbf{X} = (L^1(X); T)$ totally ergodic of quasi-discrete spectrum, signature $(H; \Lambda, \eta_1)$. Then \mathbf{X} is isomorphic to the affine automorphism system $(H^*, \mathbf{m}; \Phi^*, \eta)$, where:

1) H^* is the (compact) dual group of $H = H_d$;

2)
$$\Phi(h) = h \Lambda h$$
 for $h \in H$;

2UDelft

3) $\eta \in H^*$ is (any!) extension to H of $\eta_1 : H_1 \to \mathbb{T}$.

Recall: the dynamics on $(H^*, m; \Phi^*, \eta)$ is

$$\chi \mapsto \Phi^*(\chi)\eta = \chi(\chi \circ \Lambda)\eta.$$

Special case (Halmos-von Neumann): $H = H_1$, group rotation.

Corollary 5 (Isomorphism). Two totally ergodic systems with quasi-discrete spectrum are isomorphic iff their signatures are (in the obvious sense).

Theorem 6 (Realization). Let (H, Λ, η_1) be a signature such that H is torsion-free, and let $\eta \in H^*$ be any extension of η_1 to H. Then the associated affine automorphism system $(H^*, m; \Phi^*, \eta)$ is totally ergodic and has quasi-discrete spectrum isomorphic to (H, Λ, η_1) .

