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Setting:

» (X, u) probability space
> T : X — X u-preserving.

Assumption: T is ergodic, i.e.,
A C X is T-invariant <= pu(A) € {0,1}
Linearization:

> A~ 1, H:=12(X,p),
» T :H — Hlinear: (Tf)(x) := f(Tx).

T ergodic < FixT = {1}
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Pointwise Ergodic Theorem, Birkhoff, 1931
For every f € LY(X, ),

N
1 ner N
I\IITOON;T f(x)_/xfdu

for a.e. x € X.

Remark: f =14, (T"f)(x) = 1a(T"x):

. {ne{l,...,N}: T"x € A}|
lim =
N—oco N

1(A)

“time mean = space mean”
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Find “good” bounded weights (a,) C C:

1 N
N Z an Tnf
n=1

converge V ergodic (X, u, T) V f € L1(X, ).
Mean conv.:
1N
(an) good <— N ; ap\" conv. VA eT

Pointwise conv.: no characterization
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Motivation: Wiener-Wintner Theorem

Theorem (Wiener-Wintner, 1941)

Let (X,u, T), f € L1 be given. Then
IX" ¢ X with u(X') = 1:

1 N
N le" T"f(x)

conv. V¥x € X" and V) € T.

Remark: YA € T, (\") is pointwise good - easy
We say: (A\"), A € T, is a family of WW-weights
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Idea: Use
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and the bound (van der Corpit trick):
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Bourgain '90 (finitary van der Corput):

2

1 n
NZ T"f(x)

n=1

lim sup sup <.

N—oo AET

hence uniform conv. to 0 for weakly mixing fcts.
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Uniformity Seminorms

Gowers-Host-Kra (uniformity) seminorms:

Il = |[ 7

k n
15y = Jim —ZHT FFl3

Ex.: [[f][t, = lim & S0, [(T"F, F)[?
So we have:

lim sup sup < |If 2

N—oo AeT

ZA”T"
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WW: Summary and polynomials

WW: (e(an)),a € R, are WW-weights:

» Decomposition: H = lin{eigenfcts} @ {f with ||f][ 2 = 0}
» Uniform estimate:

. N

M SUP 00 SUPacr |y Doy e(an) T"F| < |If |2

Lesigne '90, '93: a, = e(p(n)), p € R[], are WW-weights

» Decomposition: H = {generalized eigenfcts} @ Rest

» Uniform convergence to 0 on Rest: Frantzikinakis '06 (if
totally ergodic)

Bourgain's Return Times Theorem '89: V(X, u, T) Vf € L1(X, ),
(f(T"x)) is a good weight for a.e. x.
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Host, Kra '08: Nilsequences form a WW-family
Def. (Bergelson, Host, Kra '05): (a,) is (basic) nilsequence if
an = g(S"y), v,

» y € G/I, G nilpotent Lie group, I discrete cocompact
subgroup of G

» S is rotation on G/I' by some gy € G
» g€ C(G/IN).

Host-Kra decomposition: H = Z; @ {f with ||f|| 1 = 0}

Uniform estimate: T.E., Pavel Zorin-Kranich '13

1 N

N Z an Tnf
n=1

sup over (g(S"y)) with HgHWd(le),z/ <1

lim sup sup

§ ||f||Ul+1 a.e.,
N—oo (ap)
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» p~ qif p= g on some [sp, 0]
» A Hardy field is a subfield of germs closed under
differentiation.

» U := U Hardy fields
Example: log-exp functions, e.g., x%, a € R, x™ + v/x log x
> Vp € U is comparable with V log-exp function

We consider fcts of subpolynomial growth

Hardy fields for ergodic theory/thms: Boshernitzan, Wierd|,
Kolesnik, Quas, Frantzikinakis

Boshernitzan '94: Not all e(p(n)) are Cesaro summable (growth
condition)
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Theorem (T.E., Ben Krause '15)

» (Hardy fields of noninteger type are WW)

N

> elp(n) Tf

n=1

lim sup =0 a.e,

N—oo P

sup over p “strictly between” x™~1 and x™

» (Uniform estimate)

S5 e(p(m) T

n=1

lim sup sup < |Ifljymer  a.e.,

N—oo p

sup over p “strictly dominated” by x™

So: (e(p(n))) good (WW-)weight <= it is so for nilsystems.
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> Weighted square averages

1 Y .
=N a2, T f
N n=1
Mean conv.: LN
an) is good <— — a,,)\"2 conv. YAeT
N
n=1

A.e. conv.:
» Bourgain '88: (e(an)) is good Voo € R
» T.E., Krause '15: (e(an)) form a WW-family for « € M
c-badly approximable with dim M < %
» General case open
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1 L deterministic sequences







