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Other questions

Eig, = {a|\ = exp(2ima) satisfies (E) with f € L?(p)}.

Eig = {a|exp(2ima) satisfies (E) with f € C(X,C)}. (continuous
eigenvalues)

Of course, Eig C Eig,.
Are there families for which Eig = Eig, ?

When we do not have the equality, can we precise those
eigenvalues in Eig,, that are in Eig ?



Context : minimal Cantor systems

X is a Cantor set



Context : minimal Cantor systems

X is a Cantor set

T is a homeomorphism



Context : minimal Cantor systems

X is a Cantor set
T is a homeomorphism

(X, T) is a minimal Cantor system



Context : minimal Cantor systems

X is a Cantor set
T is a homeomorphism
(X, T) is a minimal Cantor system

(X, T, p) is ergodic
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Well-known results

» For the rotation (I, Ry), where Ry is the rotation by
A = exp(2ima),

Eig = Eigiep = {na mod 1|n € N}

v

For the odometer (Z(,,,), +1), Eig = EigHaar = {a/pnla € Z}
Hedlund-Morse 40, For the Sturmian subshifts of angle «,

v

Eig = Eigiep = {na mod 1|n € N}

v

Jacob-Keane 69 and Williams 84 : For Toeplitz subshifts
Eig = {a/pula € 7},

for a characteristic sequence (pp,)
Dekking 78 : For primitive substitutions of constant length p :

Eig = Eig, = {a/qp"|a € Z}

v
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Well-known results

» Host 86 : For primitive substitutions
Eig = Eig,

» Downarowicz-Lacroix 96 and lwanik 96 : There exist Toeplitz
subshifts with Eig # Eig,, (for some ergodic measures)

» Indeed, any countable subgroup of [0, 1] containing infinitely
many rationals can be realized as Eig,, of some Toeplitz
subshift
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How to construct an eigenfunction

A = exp(2ima) eigenvalue of (X, T, u).
Let r(x) be the first return time of x to some fixed clopen set U.
We “almost” have r(x) — r(Tx) =1

Thus f(x) = X®) “almost” satisfies f o T = Af(x).
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We need good sequences of partitions

Kakutani-Rohlin partitions :

(P(n) = {T¥Bx(n);1 < k< C(n), 0<j < he(n)}; neN)
(KR1) B(n+ 1) C B(n) where B(n) = U;Bj(n)
(KR2) P(n+1) = P(n)
(KR3) N,cy B(n) consists of a unique point
(KR4) the sequence of partitions spans the topology of X

Herman-Putnam-Skau 92
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Incidence matrices
M(n) = (myx(n);1 <1< C(n),1 <k < C(n—1)) where
myk(n) = #{0 < j < hy(n); T/ By(n) C Bx(n—1)}.

Heights : H(n) = (hi(n);1 <1< C(n))T".

Tower k : Up<jchy(n) T_jBk(n)
Tn(x) = k if x is in the tower k

H(n) = M(n)H(n —1)(H(1) = M(1))
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Examples

» Substitutions : M(n) = M (stationary) (DH-Skau 1999)

» Linearly recurrent subshifts : M(n) > 0 and #{M(n)} < o0
(D 1996)

» Toeplitz subshifts : H(n) = p,(1,...,1)" (Gjerde-Johansen
2000)
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First results

rn : the first return times map to B(n).

Proposition. The following conditions are equivalent,
> )\ is a continuous eigenvalue of the minimal Cantor system
(X, T),
> ()\’"(X); n > 1) converges uniformly in x, i.e., the sequence
(arn(x); n > 1) converges (mod Z) uniformly in x.

Theorem. Let p be an invariant measure of (X, T).
A = exp(2ima) € Eig,(X, T) if and only if there exist real
functions p, : {1,...,C(n)} = R, n € N, such that

A tPnoTa(X) converges

for p-almost every x € X

Idea of the proof (classical) : Consider E,, (A™|P(n))



A NSC to be a continuous eigenvalue

Theorem. (DFM 2015) \ is a continuous eigenvalue of (X, T) if
and only if

> maglsac). ath < o
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Some properties of continuous eigenvalues

Proposition. (ltza-Ortiz 07 and CDHM 03) For all invariant
measure u, Eig is a subgroup of the group G spanned by
{r(U)|U clopen set } :

EignJo,1] C ﬂ{u )|U clopen set}.
I

or

Eig < {/X fdulf € C(X,Z)} —I(X,T).

Theorem (CDP 14). Let (X, T) be a minimal Cantor system
such that there are no non trivial f € C(X,Z) such that [ fdu =0
for all u. Then I(X, T)/Eig(X, T) is torsion free.

For sturmian subshifts : /(X, T) =Z + oZ.

Thus, the only realizable eigenvalue subgroups are Z and Z + oZ.



Some properties of continuous eigenvalues

Corollary.
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Some properties of continuous eigenvalues

Corollary.
» (BDM 10) If X is a continuous eigenvalue of (X, T) then

qupp\h’(”) —1| < 0.

> (BDM 05) If

Z <SUPke{1,...,C(m+1)} hk(m + 1)> sup | A(m) 1 |< oo

m>1 infreqa,....c(m) hi(m) ke{l,...,C(m)}

then X is a continuous eigenvalue of (X, T).
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3
|
-

ra(x) = >_{sk(x), P(k)H(1))

TW
=

(sk(x), MKH(1)) (for substitutions)

(]

T
=

p(k){sk(x), H(1)) (for Toeplitz)

>
Il
N
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Numeration for dynamical systems

Let a € Eig.

aH(n) = aP(n)H(1) - 0 mod Z
— 3ny, aH(np) = v +w, w e ZMm)
M(n)...M(ng+1)v — 0
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Numeration for dynamical systems

Theorem. (BDM 05) Let (X, T, ) be a linearly recurrent Cantor
system.

1. A € Eig, if and only if

Z max | AP — 12 < 0.
>

2. A € Eig if and only if

Z max [AP(" — 1] < oo.
n>2
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Ideas of proof

(1) = f, = E(f|P(n)), then with Martingale Theorem

o0
Z |fn — fn—lug <0
n=1

(1) <

Lemma. The sequence of random variables (7,; n € N) is a
non-stationary Markov chain. (7,(x) = name of the towers
including x in partition P(n))
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Ideas of proof

Lemma. There exist ¢ € Ry and § € [0, 1] such that for all
n,k € N, with kK < n,

sup |N[7—n = ﬂTn—k = t] - M[Tn = ﬂ‘ < C/Bk .
1<t<C(n—k),1<t<C(n)

For n > 1, define g, : X — R by

gnlx) = 3 <50, PU)v >

n—1
Jj=1

Lemma. (f, = g, —E,(gn); n > 1) converges in L2(X, Bx, ).

Using the following decomposition

Xn =< sp, P(n)v > —E, (< sp, P(n)v >) = Y, + Z,

Yy =Eu(Xa|P(n)) and Z, =< sp, P(n)v > —E,(< s, P(n)v > |P(n)) .
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Ideas of proof
(2) <
1 — foilloe <L max A1) _q|
1<k<C(n—1)
(2) =
It suffices to prove that

Z\I\P(j)aH(l)Hl <00

that is,

D IPGVI < o

j=2



Ideas of proof
(2) <
fo = facilloo <L max wk(" -
1<k<C(n

(2) =
It suffices to prove that

Z\I\P(j)ah’(l)l\l <00

that is,

D IPGVI < o

Jj=>2
We know the series

Z < sj(x), P(j)v >

j22

converges uniformly.

1] .
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Examples

(X, T, ) linearly recurrent with M(n), n > 2 in

5 2 2 1
=13 3]e=10 1]
There 6 > 0 such that

» If limsup a,/n > 0 then the system is weakly mixing.

» If limsup a,/n < 0 then the system is not weakly mixing, and
all of its eigenfunctions are continuous.

For limsup a,/n = 0 there are (LR) examples with non trivial
eigenvalues, none of them being continuous.
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Corollary. [Host 86] If (X, T) is a minimal substitutive subshift,
then

Eig = Eig,

or, all eigenfunctions are continuous.
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Toeplitz case

Let (X, T) be a Toeplitz subshift.
Gjerde-Johansen 00 : There exists a sequence of Kakutani-Rohlin
partition such that :

H(n) = p(n)(1,.., 1)"
Theorem. (Williams 84)
a € Eig iff « = a/p(n).

Theorem. (BDM10)
If (X, T) is of topological rank d, then Eig, C Q. Moreover, if
p/q is a non continuous eigenvalue then

<d.

(9. Pn)
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An example

on(1) = (12)7222, on(1) = 1(12)12, 2t, + 3 = 3%
Let (X, T) be the Toeplitz subshift generated by limoy - - o,
Eig = Z[1/3]
Figu = 7[1/3] U {1/2)



Interesting quantities

Bezuglyi-Kwiatkowski-Medynets-Solomyak 2010 : For rank d
minimal Cantor systems, we can always suppose, up to take a
subsequence of the partitions, that :



Interesting quantities

Bezuglyi-Kwiatkowski-Medynets-Solomyak 2010 : For rank d
minimal Cantor systems, we can always suppose, up to take a
subsequence of the partitions, that :

there exists dp > 0 such that:



Interesting quantities

Bezuglyi-Kwiatkowski-Medynets-Solomyak 2010 : For rank d
minimal Cantor systems, we can always suppose, up to take a
subsequence of the partitions, that :
there exists dp > 0 such that:
1. For any ergodic measure p there exists [, C {1,...,d}
verifying:



Interesting quantities

Bezuglyi-Kwiatkowski-Medynets-Solomyak 2010 : For rank d
minimal Cantor systems, we can always suppose, up to take a
subsequence of the partitions, that :
there exists dp > 0 such that:
1. For any ergodic measure p there exists [, C {1,...,d}
verifying:
1.1 p(rn = v) > o for every v € [, and n > 1, and



Interesting quantities

Bezuglyi-Kwiatkowski-Medynets-Solomyak 2010 : For rank d
minimal Cantor systems, we can always suppose, up to take a
subsequence of the partitions, that :
there exists dp > 0 such that:
1. For any ergodic measure p there exists [, C {1,...,d}
verifying:
1.1 p(rn = v) > o for every v € [, and n > 1, and
1.2 limp—yjo0 p(mh = v) =0 for every v & I,,.



Interesting quantities

Bezuglyi-Kwiatkowski-Medynets-Solomyak 2010 : For rank d
minimal Cantor systems, we can always suppose, up to take a
subsequence of the partitions, that :
there exists dp > 0 such that:
1. For any ergodic measure p there exists [, C {1,...,d}
verifying:
1.1 p(rn = v) > o for every v € [, and n > 1, and
1.2 limp—yjo0 p(mh = v) =0 for every v & I,,.

2. If p and v are different ergodic measures then [, N/, = 0.
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B, = {limm_o b/(b/pm); b € N,1/b € Eig,, }

Proposition (DFM14). For rank d Toeplitz.
» Forany it € Meg(X, T) and be By, b < #ly;

» For any p1 € Mg (X, T), B, has a unique
divisibility-maximal element b,,;

> ZHGMerg bp' g d’
> HFEMerg(X. T) < d =Y e, (bu— 1)

Proposition (BDM10). For rank d minimal Cantor systems.
#Merg(X, T)+max number of Q—independent cont.eig. < d+1.
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