
Eigenvalues of minimal Cantor systems

Fabien Durand
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Other questions

Eigµ = {α|λ = exp(2iπα) satisfies (E ) with f ∈ L2(µ)}.

Eig = {α| exp(2iπα) satisfies (E ) with f ∈ C (X ,C)}. (continuous
eigenvalues)

Of course, Eig ⊂ Eigµ.

Are there families for which Eig = Eigµ ?

When we do not have the equality, can we precise those
eigenvalues in Eigµ that are in Eig ?
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X is a Cantor set

T is a homeomorphism

(X ,T ) is a minimal Cantor system

(X ,T , µ) is ergodic
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◮ Hedlund-Morse 40, For the Sturmian subshifts of angle α,

Eig = EigLeb = {nα mod 1|n ∈ N}

◮ Jacob-Keane 69 and Williams 84 : For Toeplitz subshifts

Eig = {a/pn|a ∈ Z},

for a characteristic sequence (pn)

◮ Dekking 78 : For primitive substitutions of constant length p :

Eig = Eigµ = {a/qpn|a ∈ Z}

for some q
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Well-known results

◮ Host 86 : For primitive substitutions

Eig = Eigµ

◮ Downarowicz-Lacroix 96 and Iwanik 96 : There exist Toeplitz
subshifts with Eig 6= Eigµ (for some ergodic measures)

◮ Indeed, any countable subgroup of [0, 1] containing infinitely
many rationals can be realized as Eigµ of some Toeplitz
subshift
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Goal

Provide a unified way to tackle these questions and to go further

Key words :

◮ Good representations

◮ (Topological) Kakutani-Rohlin partitions

◮ Bratteli diagrams

◮ Vershik map

◮ Numeration systems for return times
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How to construct an eigenfunction

λ = exp(2iπα) eigenvalue of (X ,T , µ).

Let r(x) be the first return time of x to some fixed clopen set U.

We “almost” have r(x)− r(Tx) = 1

Thus f (x) = λr(x) “almost” satisfies f ◦ T = λf (x).
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We need good sequences of partitions

Kakutani-Rohlin partitions :

(

P(n) = {T−jBk(n); 1 ≤ k ≤ C (n), 0 ≤ j < hk(n)} ; n ∈ N
)

(KR1) B(n+ 1) ⊆ B(n) where B(n) = ∪iBi(n)

(KR2) P(n + 1) � P(n)

(KR3)
⋂

n∈N B(n) consists of a unique point

(KR4) the sequence of partitions spans the topology of X

Herman-Putnam-Skau 92
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Incidence matrices

M(n) = (ml ,k(n); 1 ≤ l ≤ C (n), 1 ≤ k ≤ C (n − 1)) where

ml ,k(n) = #{0 ≤ j < hl(n);T
−jBl(n) ⊆ Bk(n − 1)}.

Heights : H(n) = (hl(n); 1 ≤ l ≤ C (n))T .

Tower k : ∪0≤j<hk(n)T
−jBk(n)

τn(x) = k if x is in the tower k

H(n) = M(n)H(n − 1)(H(1) = M(1))

H(n) = P(n)H(1)
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Examples

◮ Substitutions : M(n) = M (stationary) (DH-Skau 1999)

◮ Linearly recurrent subshifts : M(n) > 0 and #{M(n)} < ∞
(D 1996)

◮ Toeplitz subshifts : H(n) = pn(1, . . . , 1)
t (Gjerde-Johansen

2000)
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First results

rn : the first return times map to B(n).

Proposition. The following conditions are equivalent,

◮ λ is a continuous eigenvalue of the minimal Cantor system
(X ,T );

◮ (λrn(x); n ≥ 1) converges uniformly in x , i.e., the sequence
(αrn(x); n ≥ 1) converges (mod Z) uniformly in x .

Theorem. Let µ be an invariant measure of (X ,T ).
λ = exp(2iπα) ∈ Eigµ(X ,T ) if and only if there exist real
functions ρn : {1, ...,C (n)} → R, n ∈ N, such that

λrn+ρn◦τn(x) converges

for µ-almost every x ∈ X

Idea of the proof (classical) : Consider Eµ(λ
rn |P(n))



A NSC to be a continuous eigenvalue

Theorem. (DFM 2015) λ is a continuous eigenvalue of (X ,T ) if
and only if

∑

n

max
x∈X

|||〈sn(x), αHn〉||| < ∞.
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Some properties of continuous eigenvalues

Proposition. (Itza-Ortiz 07 and CDHM 03) For all invariant
measure µ, Eig is a subgroup of the group G spanned by
{µ(U)|U clopen set } :

Eig ∩ [0, 1] ⊂
⋂

µ

{µ(U)|U clopen set}.

or

Eig ⊂
⋂

µ

{
∫

X

fdµ|f ∈ C (X ,Z)

}

= I (X ,T ).

Theorem (CDP 14). Let (X ,T ) be a minimal Cantor system
such that there are no non trivial f ∈ C (X ,Z) such that

∫

fdµ = 0
for all µ. Then I (X ,T )/Eig(X ,T ) is torsion free.

For sturmian subshifts : I (X ,T ) = Z+ αZ.

Thus, the only realizable eigenvalue subgroups are Z and Z+ αZ.
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Corollary.

◮ (BDM 10) If λ is a continuous eigenvalue of (X ,T ) then

∑

n

sup
i

|λhi (n) − 1| < ∞.

◮ (BDM 05) If

∑

m≥1

(

supk∈{1,...,C(m+1)} hk(m + 1)

infk∈{1,...,C(m)} hk(m)

)

sup
k∈{1,...,C(m)}

| λhk (m)−1 |< ∞

then λ is a continuous eigenvalue of (X ,T ).
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=
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k=1

〈sk(x),M
kH(1)〉 (for substitutions)

=
n−1
∑

k=1

p(k)〈sk(x),H(1)〉 (for Toeplitz)
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Let α ∈ Eig .

αH(n) = αP(n)H(1) → 0 mod Z

=⇒ ∃n0, αH(n0) = v + w , w ∈ ZC(n0)

M(n) . . .M(n0 + 1)v → 0
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Numeration for dynamical systems

Theorem. (BDM 05) Let (X ,T , µ) be a linearly recurrent Cantor
system.

1. λ ∈ Eigµ if and only if

∑

n≥2

max
i

|λhi (n) − 1|2 < ∞.

2. λ ∈ Eig if and only if

∑

n≥2

max
i

|λhi (n) − 1| < ∞.
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(1) ⇒ fn = E(f |P(n)), then with Martingale Theorem

∞
∑

n=1

||fn − fn−1||
2
2 < ∞

(1) ⇐

Lemma. The sequence of random variables (τn; n ∈ N) is a
non-stationary Markov chain. (τn(x) = name of the towers
including x in partition P(n))
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Ideas of proof
Lemma. There exist c ∈ R+ and β ∈ [0, 1[ such that for all
n, k ∈ N, with k ≤ n,

sup
1≤t≤C(n−k),1≤t̄≤C(n)

|µ[τn = t̄|τn−k = t]− µ[τn = t̄]| ≤ cβk .

For n ≥ 1, define gn : X → R by

gn(x) =
n−1
∑

j=1

< sj(x),P(j)v > ,

Lemma. (fn = gn − Eµ(gn); n ≥ 1) converges in L2(X ,BX , µ).

Using the following decomposition

Xn =< sn,P(n)v > −Eµ(< sn,P(n)v >) = Yn + Zn

Yn = Eµ(Xn|P(n)) and Zn =< sn,P(n)v > −Eµ(< sn,P(n)v > |P(n)) .
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It suffices to prove that
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Ideas of proof
(2) ⇐

||fn − fn−1||∞ ≤ L max
1≤k≤C(n−1)

|λhk (n−1) − 1| .

(2) ⇒
It suffices to prove that

∑

j≥2

|||P(j)αH(1)||| < ∞

that is,
∑

j≥2

||P(j)v || < ∞

We know the series

∑

j≥2

< sj(x),P(j)v >

converges uniformly.
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Examples

(X ,T , µ) linearly recurrent with M(n), n ≥ 2 in

{

A =

[

5 2
2 3

]

, B =

[

2 1
1 1

]

.

}

There δ > 0 such that

◮ If lim sup an/n > δ then the system is weakly mixing.

◮ If lim sup an/n < δ then the system is not weakly mixing, and
all of its eigenfunctions are continuous.

For lim sup an/n = δ there are (LR) examples with non trivial
eigenvalues, none of them being continuous.
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Corollary. [Host 86] If (X ,T ) is a minimal substitutive subshift,
then

Eig = Eigµ

or, all eigenfunctions are continuous.
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Toeplitz case

Let (X ,T ) be a Toeplitz subshift.
Gjerde-Johansen 00 : There exists a sequence of Kakutani-Rohlin
partition such that :

H(n) = p(n)(1, . . . , 1)t .

Theorem. (Williams 84)
α ∈ Eig iff α = a/p(n).

Theorem. (BDM10)
If (X ,T ) is of topological rank d , then Eigµ ⊂ Q. Moreover, if
p/q is a non continuous eigenvalue then

q

(q, pn)
≤ d .
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An example

σn(1) = (12)tn222, σn(1) = 1(12)tn12, 2tn + 3 = 3k

Let (X ,T ) be the Toeplitz subshift generated by limσ1 · · · σn

Eig = Z[1/3]

Eigµ = Z[1/3] ∪ {1/2}
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Bezuglyi-Kwiatkowski-Medynets-Solomyak 2010 : For rank d

minimal Cantor systems, we can always suppose, up to take a
subsequence of the partitions, that :
there exists δ0 > 0 such that:

1. For any ergodic measure µ there exists Iµ ⊆ {1, . . . , d}
verifying:

1.1 µ(τn = v) ≥ δ0 for every v ∈ Iµ and n ≥ 1, and
1.2 limn→+∞ µ(τn = v) = 0 for every v 6∈ Iµ.

2. If µ and ν are different ergodic measures then Iµ ∩ Iν = ∅.
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Interesting quantities

Bµ =
{

limm→∞ b/(b/pm); b ∈ N, 1/b ∈ Eigµ
}

Proposition (DFM14). For rank d Toeplitz.

◮ For any µ ∈ Merg (X ,T ) and b ∈ Bµ, b ≤ #Iµ;

◮ For any µ ∈ Merg (X ,T ), Bµ has a unique
divisibility-maximal element bµ;

◮

∑

µ∈Merg
bµ ≤ d ;

◮ #Merg (X ,T ) ≤ d −
∑

µ∈Merg
(bµ − 1)

Proposition (BDM10). For rank d minimal Cantor systems.
#Merg (X ,T )+max number of Q−independent cont.eig. ≤ d+1.
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