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1. Stationary, stochastic processes

e stationary process (SP): (Q,A4,P,S,y) where
(2,A,P,S) is a PPT & ¢ : Q - R measurable.

Call the SP (Q,A4,P,S,¢):
= positive if p > 0;
= ergodic (ESP) if (Q,A,P,S) is ergodic.

= independent (identically distributed) (IIDSP) if {0 S™: n>0} are
independent random variables.
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2. Distributional convergence
For (X, d) a metric space set

RV(R,) := {random variables on X} = P(X) byY « distY.
For Yy, Y RV (X) say that Y, 255 v if
n—oo

E(g(Yn) — E(g(Y)) Vg e Ca(X), 1.c. dist v, 29, qisty.

n—oo

d-Vasershtein distance: v =14 on RV(X):
o(Y1, Y2) =
min {E(d(Z1,25)): Z =(Z1,2) €RV(Rs xR,), Z Ly, (71=1,2)).

In case (X, d) is compact, then for Y,, Y eRV(R,),

v, 255 v o u(Y,,Y) — O

n—oo n—oo
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2. Classics

Let v €(0,1] and let (Q2,.A, P, S, ) be a positive IIDSP so that

E(pn ) A(t) A(t) ~-reg. var. i.e. A((Xt)) ——x7V x>0.

o Let: p,:=Y0 1905k b(n):= A1(n), then

(SLT) b<,(0n) dist, Z, where Z, is y-stable i.e.
n n—oo

E(eP®)=e" (c>0).

Note that Z; is constant.
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3. l-regularly varying normalizing constants

A. & Omri Sarig, [ETDS, 2014] 3 +-ive ESP (Q,F, P, R, ) so that

1 nz_:lgDORk dist e%N(O’W
b(n) = n—oo

where b(n) o< n\/logn and N'(0,1) is standard normal.

Info. R =7% where 7 is the dyadic adding machine and 7 is the
“exchangability waiting time”.

R is aka the "Pascal-adic” or “de Finetti” transformation.



3. The general positive distributional limit

[3®, 20157] A. & Benjamin Weiss: Let Y €RV(R,), then
3

an odometer (Q,F,P,S),

e an increasing 1 reg. var. function b: R, - R, and

e a positive measurable function ¢ : Q — R, so that

1 n-1 .
T posk ALy
b(n) = n—>oo

®) [, 20157]  Such a function exists on any EPPT.
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4. Strong distributional convergence

For (X, B, m) a measure space, F,: X — [0, 00] measurable,
PeP(X,B), P< mand
Y €RV ([0, o0]) := {random variables on [0,00]}:

P-dist

F, — Y if P-dist. F, — dist. Y.
n—oo n—oo
Fn—> Y if F, P‘LIStY V PeP(X,B), P<m.
n—oo

Q[Eagleson] If (X,B,m, T,f) is an ESP, a(n) - oo &

1 n-1 45
foTk PAISE vt come P e P(X,B) P <« m,
a(n) o n=ee

then

foTk 2o v.
a(n)Z -
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5. The general case for [$b]

Fix Y e RV(R,). As above there is an odometer (Y,C,v,7) and a
function F : Y — R, satisfying [#®)].

Let (Q,F,P,S) be an EPPT.
o JAeF, & M: (A Fa, Pa,Sa)— (Y,C,v,7), whence
(A, Fa, Pa,Sa, F o) satisfies [&B].

Using Eagleson’s theorem and monotonicity, can show that
(Q,F,P,S, ) satisfies [D] where f =14F o1 :-

If Kn(x)=F#{k<n: S(x)eA} then K,(x) ~ m(A)n and
S () =SV (Fom).

For e >0, N.:=(1+e)m(A)n, for large n with high probability,

S (Fem) s{T(f) SS(Fom)

STV B ¢ R (T
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6. Castles

Castle Q= {W;: 1<j <k} where the W= (hj,hj,...,In) are
columns of intervals with equal widths and heights h =: |20]|.

The union of W is U(W) = Uk l-

Here, always m(U(20)) = 1 where m = Leb. So sometimes write
uw) = (0,1).

A Rokhlin tower is a castle with a single column.

Castle 27 equipped with partial transformation
Top: U(W) 2 (0,1) - U(W)

defined by the translations Iy ; =/, 1 mod h
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7. Refinements & inverse limit PPTs
The castle 20" = {W/: 1<j<k'}, refines W (W' >2W) if
U(W') = U(2W), Top(W') < Top(W) & Taw oy Top(an) = Tav-

where Top(20) = U Ip,;.

The refinement 20’ > 27 is transitive if

m(U(W)n U(W")) >0V columns W e 23 & W' e 3"

©) (1) If -+ < W < Wiy <... & m(Top(2W,)) —— 0,
then 3PPT 7:=lim 0, of (0,1) = U(20,) so that for m-a.e.
x€(0,1), Tay,(x)=7(x) V n large.

© (2) If in addition, infinitely many of the refinements
W, < W1 are transitive then Liﬂ,, - 2, is ergodic.
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7. Rokhlin towers and odometers

Homogeneous refinement: 20’ > 20 where

, __ Q
W/ =K W where W := @l(qu)%
q=

Here, for columns W & W' with equal width,
e W o W'is the stacking of W' over W;

o {9Wj: 1< k<q}is the castle obtained by slicing W into ¢
subcolumns of equal width & height.

©q ._ q q
e W* =@, W.
If W, < W41 < ... are homogeneous refinements, then

lim 20, = lim W, is an odometer.
<« <«

n—oo n—oo
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8. Step functions & symmetric random variables

Step function on a castle 2U: a function F : 20 — R, which
is constant on each interval of 25.

Castle process: (20, F) where 20 is a castle and F : 20 — R, is
a step feunction.

Symmetric random variable: Y = (,y) where Q is a finite set
& 1:Q - R,. Here the distribution is

#n LA

Prob(Y € A) := 40

(2,n)-distributed castle process: (20, F) where

W={W,=(hws - Ihw): weQ} & 3 c=c(2W,F) such that

h
E(W,) = %kz_:lF(lk,w) = cp(w).
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9. The ESP constructed for symmetric Y

Fix a symmetricrv Y = (Q,9) and let A, 10, ¥, A, < co.

ﬁ There is a homogeneously refining sequence ( (20, F5) )ns1 of
(£2,p)-dist'd castle processes with heights h,, so that for each n>1
(i) m([Fn # Fpi1]) < A,

(i) 3 v(hy) <y(hp+1) <--- <7y(hps1) so that
v(k+1)—~(k) <A, and

o(35E0) < Awa

Here v(hp) = c(Wp, Fp).
(iii) for each k> A1 and w € Q,

P(Sk(Fns1) = 0(@)ky (k) (L £ Apa) [WS™) > 1= Ay
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10. The function constructed from blocks

Let (20, F,) be the n*™ castle process.
Fn: Wj(") — R, given by block Wj(") € Rf’r".

Identify F,:20, - R, with the block array {ij(n) : 1<) <k}

Recursions for the block arrays: of form
@n ©sQn
o < (oo o)) o0
q:

. hn
where ® means concatenation and 5‘5}) eRY™ (1<q<Qp) are
“small modifications”.
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11. Block statistics & e-normalizations

For w € R" a block,

M(w) = max wj, T(w)= > w & E(w):= ?

1<j<h | |
M(w®)) = M(w) & E(w®’) = E(w).
Block w € Rf is e-normalized if

ex(w)

Si(w)=kE(w)(1+te) V k>——= I\/l( )

If wis a block & € >0, then w®™ is e- normalized V large m.



12. Basic Lemma for &

For: 0<A<1, weR! A- normalized
0<k<AE(w), >0, g>x% L & for 11 € N large enough: if
m:=puq &

w' = w) = wom 4 KQhl(1 mhnghz

then

(i) w' is d-normalized;

(ii) E(w') = E(w) +&;

(i) P(Sk(w') = S(w®™) V 1<k <VAgh)>1-VA;
(V) Se(w') = kE(w)(1£2VA) ¥V VAgh< k< gh;

(v) Sk(w') = k(E(w) + k) (1£ (A AL+ 29 v k> gh.



13. Block average changes

e 0<A<1,heN& FcR"a A-normalized h-block array.

e For Jc (1,00) finite, V #>0 & & >0,and Q€N large
enough, there exist

e an &-normalized, Qh—block array
{v(w,t): weF, teJ} cR

so that for each we F & t e J,

e v(w,t) A-approximates w in the sense that
P(Sc(v(w, 1)) = S (w®?) V 1<k<Ah)>1-2A.
and

E(v(w,t)) = tE(w).



14. Simultaneous normallzatlon of block partial sums
Let 0<A<1l,heNandlet Fc R be a A-normalized h-block

array then

VI>1 >0 >0 & Q€N large enough,
there exists a £-normalized, Qh—block array

V={v(w): weF}cR¥

so that so that for each w € F,
() E(v(w))=TE(w);
(if) P(Sc(v(w)) = Si(w®®) V 1<k<Ah)>1-2A.
Moreover there are constants y(k) >0, (Ah < k < Qh) so that
(iii) 1=~([Ah]) <v([Ah]+1)<... <~(Qh) =T,
(iv) 0<vy(k+1)—y(k) < 5;
and such that for each w ¢ F,

(i) P([Sk(v(w)) = ky(K)E(w)(1£E)])>1-E V k> EQh.



15. Inductive stage in & for Y =1,2 w.p. %: Intermediates




16. Inductive stage in & for Y =1,2 w.p. %: Next

o>
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17. Consequences for infinite ergodic theory

@ For each Y € RV((0, 00)) there is a CEMPT (X,B,m, T):
and a 1-regularly varying function a(n) so that

SSV() )
TORRE fofdm v fell(m),.

Proof By [®®] 3 an ESP (2, F,P,S,¢) and a 1-regularly varying
function a(n) so that

©n 1

b(n) nse Y’

Define (X,B,m, T) by
Xim {(win): we R 1< n< (@), m(Ax{n}) = P(An[io> n]) &

(5x,1) n=p(x),
(x,n+1) n < @(x).

T(x,n):= {
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T )S(T)(l Q) — Y.

Proof
5,,(19)>K <~ YK < n.



18. Conclusnon of proof by inversion
Let a:= b7!, then a is 1-regularly varying.

By the ratio ergodic theorem, it suffices to show that

L5,(7”(19) — Y.
a(n) n—oo

Proof
Sn(lg)>K <= @k <n.
Sfort>0, P(Y=t)=0,n,N>1& N~ ta(n),
P(S,(1q) > ta(n)) ~ P(S,(1q) > N)
= P(¢n < n)
~ P(on < b(N)




19. The End



19. The End

Thank you for listening.



