Distributional limits of positive, ergodic stationary processes

& infinite ergodic transformations

Jon. Aaronson (TAU)

Frontiers in Operators Dynamics CIRM

29th Sep 2015 work in progress w. Benjamin Weiss

・ 同 ト ・ ヨ ト ・ ヨ ト

• stationary process (SP): $(\Omega, \mathcal{A}, P, S, \varphi)$ where $(\Omega, \mathcal{A}, P, S)$ is a PPT & $\varphi : \Omega \to \mathbb{R}$ measurable.

• stationary process (SP): $(\Omega, \mathcal{A}, P, S, \varphi)$ where $(\Omega, \mathcal{A}, P, S)$ is a PPT & $\varphi : \Omega \to \mathbb{R}$ measurable. Call the SP $(\Omega, \mathcal{A}, P, S, \varphi)$:

• stationary process (SP): $(\Omega, \mathcal{A}, P, S, \varphi)$ where $(\Omega, \mathcal{A}, P, S)$ is a PPT & $\varphi : \Omega \to \mathbb{R}$ measurable. Call the SP $(\Omega, \mathcal{A}, P, S, \varphi)$:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

– *positive* if $\varphi \ge 0$;

• stationary process (SP): $(\Omega, \mathcal{A}, P, S, \varphi)$ where $(\Omega, \mathcal{A}, P, S)$ is a PPT & $\varphi : \Omega \to \mathbb{R}$ measurable. Call the SP $(\Omega, \mathcal{A}, P, S, \varphi)$:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- **-** *positive* if $\varphi \ge 0$;
- ergodic (ESP) if $(\Omega, \mathcal{A}, P, S)$ is ergodic.

• stationary process (SP): $(\Omega, \mathcal{A}, P, S, \varphi)$ where $(\Omega, \mathcal{A}, P, S)$ is a PPT & $\varphi : \Omega \to \mathbb{R}$ measurable. Call the SP $(\Omega, \mathcal{A}, P, S, \varphi)$:

- *positive* if $\varphi \ge 0$;
- ergodic (ESP) if $(\Omega, \mathcal{A}, P, S)$ is ergodic.

- independent (identically distributed) (IIDSP) if $\{\varphi \circ S^n : n \ge 0\}$ are independent random variables.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

 $\mathrm{RV}(\mathbb{R}_+) \coloneqq \{ \text{random variables on } X \} \cong \mathcal{P}(X) \text{ by } Y \iff \text{dist } Y.$

 $\mathrm{RV}(\mathbb{R}_+) \coloneqq \{ \text{random variables on } X \} \cong \mathcal{P}(X) \text{ by } Y \iff \text{dist } Y.$

For
$$Y_n$$
, $Y \in \mathbb{RV}(X)$ say that $Y_n \xrightarrow[n \to \infty]{dist} Y$ if

$$E(g(Y_n)) \xrightarrow[n \to \infty]{} E(g(Y)) \forall g \in C_B(X), \text{ i.e. } \operatorname{dist} Y_n \xrightarrow[n \to \infty]{} \operatorname{dist} Y.$$

 $\mathrm{RV}(\mathbb{R}_+) \coloneqq \{ \text{random variables on } X \} \cong \mathcal{P}(X) \text{ by } Y \rightsquigarrow \text{ dist } Y.$

For
$$Y_n$$
, $Y \in \mathbb{RV}(X)$ say that $Y_n \xrightarrow[n \to \infty]{dist} Y$ if

$$E(g(Y_n)) \xrightarrow[n \to \infty]{} E(g(Y)) \forall g \in C_B(X), \text{ i.e. } \operatorname{dist} Y_n \xrightarrow[n \to \infty]{} \operatorname{dist} Y.$$

d-Vasershtein distance: $v = v_d$ on RV(X):

 $\mathfrak{v}(Y_1, Y_2) := \\ \min \{ E(d(Z_1, Z_2)) : \ Z = (Z_1, Z_2) \in \mathtt{RV}(\mathbb{R}_+ \times \mathbb{R}_+), \ Z_i \stackrel{\texttt{dist}}{=} Y_i \ (i = 1, 2) \}.$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

 $\mathrm{RV}(\mathbb{R}_+) \coloneqq \{ \text{random variables on } X \} \cong \mathcal{P}(X) \text{ by } Y \nleftrightarrow \text{ dist } Y.$

For
$$Y_n$$
, $Y \in \mathbb{RV}(X)$ say that $Y_n \xrightarrow[n \to \infty]{dist} Y$ if

$$E(g(Y_n)) \xrightarrow[n \to \infty]{} E(g(Y)) \forall g \in C_B(X), \text{ i.e. } \operatorname{dist} Y_n \xrightarrow[n \to \infty]{} \operatorname{dist} Y.$$

d-Vasershtein distance: $v = v_d$ on RV(X):

$$\begin{split} \mathfrak{v}(Y_1, Y_2) &\coloneqq \\ \min \left\{ E(d(Z_1, Z_2)) : \ Z = (Z_1, Z_2) \in \mathtt{RV}(\mathbb{R}_+ \times \mathbb{R}_+), \ Z_i \stackrel{\texttt{dist}}{=} Y_i \ (i = 1, 2) \right\}. \\ \text{In case } (X, d) \text{ is compact, then for } Y_n, \ Y \in \mathtt{RV}(\mathbb{R}_+), \end{split}$$

$$Y_n \xrightarrow[n \to \infty]{\text{dist}} Y \iff \mathfrak{v}(Y_n, Y) \xrightarrow[n \to \infty]{} 0.$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Let $\gamma \in (0,1]$ and let $(\Omega, \mathcal{A}, \mathcal{P}, \mathcal{S}, \varphi)$ be a positive IIDSP so that

Let $\gamma \in (0,1]$ and let $(\Omega, \mathcal{A}, \mathcal{P}, \mathcal{S}, \varphi)$ be a positive IIDSP so that

$$E(\varphi \wedge t) \underset{t \to \infty}{\propto} \frac{t}{A(t)}, A(t) \gamma$$
-reg. var. i.e. $\frac{A(xt)}{A(t)} \xrightarrow[t \to \infty]{} x^{\gamma} \forall x > 0.$

Let $\gamma \in (0,1]$ and let $(\Omega, \mathcal{A}, \mathcal{P}, \mathcal{S}, \varphi)$ be a positive IIDSP so that

$$E(\varphi \wedge t) \underset{t \to \infty}{\propto} \frac{t}{A(t)}, A(t) \gamma$$
-reg. var. i.e. $\frac{A(xt)}{A(t)} \xrightarrow{t \to \infty} x^{\gamma} \forall x > 0.$

• Let:
$$\varphi_n \coloneqq \sum_{k=1}^n \varphi \circ S^k$$
, $b(n) \coloneqq A^{-1}(n)$, then

Let $\gamma \in (0,1]$ and let $(\Omega, \mathcal{A}, \mathcal{P}, \mathcal{S}, \varphi)$ be a positive IIDSP so that

$$E(\varphi \wedge t) \underset{t \to \infty}{\propto} \frac{t}{A(t)}, A(t) \gamma$$
-reg. var. i.e. $\frac{A(xt)}{A(t)} \xrightarrow{t \to \infty} x^{\gamma} \forall x > 0.$

• Let:
$$\varphi_n \coloneqq \sum_{k=1}^n \varphi \circ S^k$$
, $b(n) \coloneqq A^{-1}(n)$, then

(SLT)
$$\qquad \frac{\varphi_n}{b(n)} \xrightarrow[n \to \infty]{\text{dist}} Z_{\gamma} \text{ where } Z_{\gamma} \text{ is } \gamma\text{-stable i.e.}$$

 $E(e^{-pZ_{\gamma}}) = e^{-cp^{\gamma}} (c > 0).$

Let $\gamma \in (0,1]$ and let $(\Omega, \mathcal{A}, \mathcal{P}, \mathcal{S}, \varphi)$ be a positive IIDSP so that

$$E(\varphi \wedge t) \underset{t \to \infty}{\propto} \frac{t}{A(t)}, A(t) \gamma$$
-reg. var. i.e. $\frac{A(xt)}{A(t)} \xrightarrow{t \to \infty} x^{\gamma} \forall x > 0.$

• Let:
$$\varphi_n \coloneqq \sum_{k=1}^n \varphi \circ S^k$$
, $b(n) \coloneqq A^{-1}(n)$, then

(SLT)
$$\frac{\varphi_n}{b(n)} \xrightarrow[n \to \infty]{\text{ alst}} Z_{\gamma} \text{ where } Z_{\gamma} \text{ is } \gamma\text{-stable i.e.}$$

 $E(e^{-pZ_{\gamma}}) = e^{-cp^{\gamma}} (c > 0).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Note that Z_1 is constant.

3. 1-regularly varying normalizing constants

A. & Omri Sarig, [ETDS, 2014] \exists +-ive ESP $(\Omega, \mathcal{F}, P, R, \varphi)$ so that

$$\frac{1}{b(n)}\sum_{k=0}^{n-1}\varphi\circ R^k \xrightarrow[n\to\infty]{\text{dist}} e^{\frac{1}{2}\mathcal{N}(0,1)^2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

where $b(n) \propto n\sqrt{\log n}$ and $\mathcal{N}(0,1)$ is standard normal.

3. 1-regularly varying normalizing constants

A. & Omri Sarig, [ETDS, 2014] \exists +-ive ESP $(\Omega, \mathcal{F}, P, R, \varphi)$ so that

$$\frac{1}{b(n)}\sum_{k=0}^{n-1}\varphi\circ R^k \xrightarrow[n\to\infty]{\text{dist}} e^{\frac{1}{2}\mathcal{N}(0,1)^2}$$

where $b(n) \propto n \sqrt{\log n}$ and $\mathcal{N}(0,1)$ is standard normal.

Info. $R = \tau^{\varphi}$ where τ is the dyadic adding machine and τ is the "exchangability waiting time".

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

3. 1-regularly varying normalizing constants

A. & Omri Sarig, [ETDS, 2014] \exists +-ive ESP $(\Omega, \mathcal{F}, P, R, \varphi)$ so that

$$\frac{1}{b(n)}\sum_{k=0}^{n-1}\varphi\circ R^k \xrightarrow[n\to\infty]{\text{dist}} e^{\frac{1}{2}\mathcal{N}(0,1)^2}$$

where $b(n) \propto n \sqrt{\log n}$ and $\mathcal{N}(0,1)$ is standard normal.

Info. $R = \tau^{\varphi}$ where τ is the dyadic adding machine and τ is the "exchangability waiting time".

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

R is aka the "Pascal-adic" or "de Finetti" transformation.

3. The general positive distributional limit

[$\mathcal{T}_{\mathbb{R}}$, 2015?] A. & Benjamin Weiss: Let $Y \in \mathbb{RV}(\mathbb{R}_+)$, then \exists

- an odometer $(\Omega, \mathcal{F}, P, S)$,
- an increasing 1 reg. var. function $b: \mathbb{R}_+ \to \mathbb{R}_+$ and
- a positive measurable function $\varphi: \Omega \to \mathbb{R}_+$ so that

$$\frac{1}{b(n)}\sum_{k=0}^{n-1}\varphi\circ S^k\xrightarrow[n\to\infty]{\text{dist}}Y.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

(5) [56, 2015?] Such a function exists on any EPPT.

For (X, \mathcal{B}, m) a measure space, $F_n : X \to [0, \infty]$ measurable, $P \in \mathcal{P}(X, \mathcal{B}), P \ll m$ and $Y \in \mathbb{RV}([0, \infty]) := \{\text{random variables on } [0, \infty]\}:$

For (X, \mathcal{B}, m) a measure space, $F_n : X \to [0, \infty]$ measurable, $P \in \mathcal{P}(X, \mathcal{B}), P \ll m$ and $Y \in \mathbb{RV}([0, \infty]) := \{\text{random variables on } [0, \infty]\}:$

$$F_n \xrightarrow[n \to \infty]{p-\text{dist}} Y \text{ if } P - \text{dist.} F_n \xrightarrow[n \to \infty]{} \text{dist.} Y.$$

For (X, \mathcal{B}, m) a measure space, $F_n : X \to [0, \infty]$ measurable, $P \in \mathcal{P}(X, \mathcal{B}), P \ll m$ and $Y \in \mathbb{RV}([0, \infty]) := \{\text{random variables on } [0, \infty]\}:$

$$F_n \xrightarrow[n \to \infty]{P-\operatorname{dist}} Y \text{ if } P - \operatorname{dist}. F_n \xrightarrow[n \to \infty]{} \operatorname{dist}. Y.$$

$$F_n \xrightarrow[n \to \infty]{\mathfrak{d}} Y \text{ if } F_n \xrightarrow[n \to \infty]{P-\text{dist}} Y \quad \forall \quad P \in \mathcal{P}(X, \mathcal{B}), \ P \ll m.$$

For (X, \mathcal{B}, m) a measure space, $F_n : X \to [0, \infty]$ measurable, $P \in \mathcal{P}(X, \mathcal{B}), P \ll m$ and $Y \in \mathbb{RV}([0, \infty]) := \{\text{random variables on } [0, \infty]\}:$

$$F_n \xrightarrow[n \to \infty]{P-\operatorname{dist}} Y \text{ if } P - \operatorname{dist}. F_n \xrightarrow[n \to \infty]{} \operatorname{dist}. Y.$$

$$F_n \xrightarrow[n \to \infty]{\mathfrak{d}} Y \text{ if } F_n \xrightarrow[n \to \infty]{P-\text{dist}} Y \quad \forall \quad P \in \mathcal{P}(X, \mathcal{B}), \ P \ll m.$$

 $\P[\mathsf{Eagleson}] \text{ If } (X, \mathcal{B}, m, T, f) \text{ is an ESP, } a(n) \to \infty \ \&$

$$\frac{1}{a(n)}\sum_{k=0}^{n-1}f\circ T^k\xrightarrow[n\to\infty]{P-\text{dist}}Y \text{ for some }P\in\mathcal{P}(X,\mathcal{B})\ P\ll m,$$

then

$$\frac{1}{a(n)}\sum_{k=0}^{n-1}f\circ T^k\xrightarrow[n\to\infty]{}Y.$$

Fix $Y \in \mathbb{RV}(\mathbb{R}_+)$. As above there is an odometer $(Y, \mathcal{C}, \nu, \tau)$ and a function $F: Y \to \mathbb{R}_+$ satisfying [$\mathfrak{K}_{\mathbb{P}}$].

Fix $Y \in \mathbb{RV}(\mathbb{R}_+)$. As above there is an odometer $(Y, \mathcal{C}, \nu, \tau)$ and a function $F: Y \to \mathbb{R}_+$ satisfying [\mathfrak{K}]. Let $(\Omega, \mathcal{F}, P, S)$ be an EPPT.

Fix $Y \in \mathbb{RV}(\mathbb{R}_+)$. As above there is an odometer $(Y, \mathcal{C}, \nu, \tau)$ and a function $F : Y \to \mathbb{R}_+$ satisfying [\mathfrak{K}]. Let $(\Omega, \mathcal{F}, P, S)$ be an EPPT.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

• $\exists A \in \mathcal{F}_+ \& \Pi : (A, \mathcal{F}_A, P_A, S_A) \to (Y, \mathcal{C}, \nu, \tau)$, whence

Fix $Y \in \mathbb{RV}(\mathbb{R}_+)$. As above there is an odometer $(Y, \mathcal{C}, \nu, \tau)$ and a function $F : Y \to \mathbb{R}_+$ satisfying [\mathfrak{K}]. Let $(\Omega, \mathcal{F}, P, S)$ be an EPPT.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• $\exists A \in \mathcal{F}_+ \& \Pi : (A, \mathcal{F}_A, P_A, S_A) \to (Y, \mathcal{C}, \nu, \tau)$, whence $(A, \mathcal{F}_A, P_A, S_A, F \circ \Pi)$ satisfies [5%].

Fix $Y \in \text{RV}(\mathbb{R}_+)$. As above there is an odometer $(Y, \mathcal{C}, \nu, \tau)$ and a function $F : Y \to \mathbb{R}_+$ satisfying [\mathfrak{K}]. Let $(\Omega, \mathcal{F}, P, S)$ be an EPPT.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• $\exists A \in \mathcal{F}_+ \& \Pi : (A, \mathcal{F}_A, P_A, S_A) \to (Y, \mathcal{C}, \nu, \tau)$, whence $(A, \mathcal{F}_A, P_A, S_A, F \circ \Pi)$ satisfies [5%].

Using Eagleson's theorem and monotonicity, can show that $(\Omega, \mathcal{F}, P, S, f)$ satisfies [\mathfrak{K}] where $f = 1_A F \circ \Pi$:-

Fix $Y \in \text{RV}(\mathbb{R}_+)$. As above there is an odometer $(Y, \mathcal{C}, \nu, \tau)$ and a function $F : Y \to \mathbb{R}_+$ satisfying [\mathfrak{K}]. Let $(\Omega, \mathcal{F}, P, S)$ be an EPPT.

• $\exists A \in \mathcal{F}_+ \& \Pi : (A, \mathcal{F}_A, P_A, S_A) \to (Y, \mathcal{C}, \nu, \tau)$, whence $(A, \mathcal{F}_A, P_A, S_A, F \circ \Pi)$ satisfies [$\eth \bowtie$].

Using Eagleson's theorem and monotonicity, can show that $(\Omega, \mathcal{F}, P, S, f)$ satisfies [$\eth \Theta$] where $f = 1_A F \circ \Pi$:-

If $K_n(x) = \#\{k \le n : S(x) \in A\}$ then $K_n(x) \sim m(A)n$ and $S_n(f)^{(T)}(f) = S_{K_n}^{(T_A)}(F \circ \Pi).$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Fix $Y \in \mathbb{RV}(\mathbb{R}_+)$. As above there is an odometer $(Y, \mathcal{C}, \nu, \tau)$ and a function $F : Y \to \mathbb{R}_+$ satisfying [$\mathfrak{K}_{\mathbb{C}}$]. Let $(\Omega, \mathcal{F}, P, S)$ be an EPPT.

• $\exists A \in \mathcal{F}_+ \& \Pi : (A, \mathcal{F}_A, P_A, S_A) \to (Y, \mathcal{C}, \nu, \tau)$, whence $(A, \mathcal{F}_A, P_A, S_A, F \circ \Pi)$ satisfies [$\eth \bowtie$].

Using Eagleson's theorem and monotonicity, can show that $(\Omega, \mathcal{F}, P, S, f)$ satisfies [\mathfrak{K}] where $f = 1_A F \circ \Pi$:-

If $K_n(x) = \#\{k \le n : S(x) \in A\}$ then $K_n(x) \sim m(A)n$ and $S_n(f)^{(T)}(f) = S_{K_n}^{(T_A)}(F \circ \Pi).$

For $\epsilon > 0$, $N_{\pm} := (1 \pm \epsilon)m(A)n$, for large n with high probability,

$$(1-\epsilon)\frac{S_{N_{-}}^{(T_{A})}(F\circ\Pi)}{b(N_{-})} \lesssim \frac{S_{n}^{(T)}(f)}{b(n)} \lesssim (1+\epsilon)\frac{S_{N_{+}}^{(T_{A})}(F\circ\Pi)}{b(N_{+})}$$

Castle $\mathfrak{W} = \{W_j : 1 \le j \le k\}$ where the $W_j = (I_{1,j}, I_{2,j}, \dots, I_{h,j})$ are columns of intervals with equal widths and heights $h =: |\mathfrak{W}|$.

Castle $\mathfrak{W} = \{W_j: 1 \le j \le k\}$ where the $W_j = (I_{1,j}, I_{2,j}, \dots, I_{h,j})$ are columns of intervals with equal widths and heights $h =: |\mathfrak{W}|$. The union of \mathfrak{W} is $U(\mathfrak{W}) := \bigcup_{k,j} I_{k,j}$.

 $U(\mathfrak{W}) = (0, 1).$

Castle $\mathfrak{W} = \{W_j: 1 \le j \le k\}$ where the $W_j = (I_{1,j}, I_{2,j}, \dots, I_{h,j})$ are columns of intervals with equal widths and heights $h =: |\mathfrak{W}|$. The union of \mathfrak{W} is $U(\mathfrak{W}) := \bigcup_{k,j} I_{k,j}$. Here, always $m(U(\mathfrak{W})) = 1$ where m = Leb. So sometimes write

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Castle $\mathfrak{W} = \{W_j : 1 \le j \le k\}$ where the $W_j = (I_{1,j}, I_{2,j}, \dots, I_{h,j})$ are columns of intervals with equal widths and heights $h =: |\mathfrak{W}|$.

The union of \mathfrak{W} is $U(\mathfrak{W}) \coloneqq \bigcup_{k,j} I_{k,j}$.

Here, always $m(U(\mathfrak{W})) = 1$ where m = Leb. So sometimes write $U(\mathfrak{W}) = (0, 1)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

A Rokhlin tower is a castle with a single column.

Castle $\mathfrak{W} = \{W_j : 1 \le j \le k\}$ where the $W_j = (I_{1,j}, I_{2,j}, \dots, I_{h,j})$ are columns of intervals with equal widths and heights $h =: |\mathfrak{W}|$.

The union of \mathfrak{W} is $U(\mathfrak{W}) \coloneqq \bigcup_{k,j} I_{k,j}$.

Here, always $m(U(\mathfrak{W})) = 1$ where m = Leb. So sometimes write $U(\mathfrak{W}) = (0, 1)$.

A Rokhlin tower is a castle with a single column.

Castle ${\mathfrak W}$ equipped with partial transformation

 $T_{\mathfrak{W}}: U(\mathfrak{W})\cong (0,1) \to U(\mathfrak{W})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

defined by the translations $I_{k,j} \mapsto I_{k+1 \mod h,j}$.

7. Refinements & inverse limit PPTs

The castle $\mathfrak{W}' = \{ W'_j : 1 \le j \le k' \}$, refines \mathfrak{W} ($\mathfrak{W}' > \mathfrak{W}$) if

 $U(\mathfrak{W}') = U(\mathfrak{W}), \ \operatorname{Top}(\mathfrak{W}') \subset \operatorname{Top}(\mathfrak{W}) \& \ T_{\mathfrak{W}'}|_{\mathfrak{W} \setminus \operatorname{Top}(\mathfrak{W})} \equiv T_{\mathfrak{W}}.$

where $\operatorname{Top}(\mathfrak{W}) \coloneqq \bigcup_j I_{h,j}$.

7. Refinements & inverse limit PPTs

The castle $\mathfrak{W}' = \{ W'_j : 1 \le j \le k' \}$, refines \mathfrak{W} ($\mathfrak{W}' > \mathfrak{W}$) if

 $U(\mathfrak{W}') = U(\mathfrak{W}), \ \operatorname{Top}(\mathfrak{W}') \subset \operatorname{Top}(\mathfrak{W}) \& \ T_{\mathfrak{W}'}|_{\mathfrak{W} \setminus \operatorname{Top}(\mathfrak{W})} \equiv T_{\mathfrak{W}}.$

where $\operatorname{Top}(\mathfrak{W}) \coloneqq \bigcup_{j} I_{h,j}$. The refinement $\mathfrak{W}' > \mathfrak{W}$ is transitive if

 $m(U(W) \cap U(W')) > 0 \forall$ columns $W \in \mathfrak{W} \& W' \in \mathfrak{W}'$.

7. Refinements & inverse limit PPTs

The castle $\mathfrak{W}' = \{W'_j : 1 \le j \le k'\}$, refines \mathfrak{W} $(\mathfrak{W}' \succ \mathfrak{W})$ if $U(\mathfrak{W}') = U(\mathfrak{W})$, $\operatorname{Top}(\mathfrak{W}') \subset \operatorname{Top}(\mathfrak{W}) \& T_{\mathfrak{W}'}|_{\mathfrak{W} \setminus \operatorname{Top}(\mathfrak{W})} \equiv T_{\mathfrak{W}}$.

where $\text{Top}(\mathfrak{W}) \coloneqq \bigcup_{j} I_{h,j}$. The refinement $\mathfrak{W}' > \mathfrak{W}$ is transitive if

 $m(U(W) \cap U(W')) > 0 \forall$ columns $W \in \mathfrak{W} \& W' \in \mathfrak{W}'$.

$$\begin{array}{c} \textcircled{ } \\ \textcircled{ } \\ (1) \text{ If } \cdots < \mathfrak{W}_n < \mathfrak{W}_{n+1} < \cdots & m(\operatorname{Top}(\mathfrak{W}_n)) \xrightarrow[n \to \infty]{} 0, \\ \text{then } \exists \text{ PPT } \tau := \varprojlim_{n \to \infty} \mathfrak{W}_n \text{ of } (0,1) = U(\mathfrak{W}_n) \text{ so that for } m\text{-a.e.} \\ x \in (0,1), \ T_{\mathfrak{W}_n}(x) = \tau(x) \quad \forall \ n \text{ large.} \end{array}$$

7. Refinements & inverse limit PPTs

The castle $\mathfrak{W}' = \{ W'_j : 1 \le j \le k' \}$, refines \mathfrak{W} ($\mathfrak{W}' > \mathfrak{W}$) if

 $U(\mathfrak{W}') = U(\mathfrak{W}), \ \operatorname{Top}(\mathfrak{W}') \subset \operatorname{Top}(\mathfrak{W}) \& \ T_{\mathfrak{W}'}|_{\mathfrak{W} \setminus \operatorname{Top}(\mathfrak{W})} \equiv T_{\mathfrak{W}}.$

where $\operatorname{Top}(\mathfrak{W}) \coloneqq \bigcup_{j} I_{h,j}$. The refinement $\mathfrak{W}' > \mathfrak{W}$ is transitive if

 $m(U(W) \cap U(W')) > 0 \forall$ columns $W \in \mathfrak{W} \& W' \in \mathfrak{W}'$.

 $\begin{array}{c} \textcircled{ : } \\ (1) \text{ If } \cdots < \mathfrak{W}_n < \mathfrak{W}_{n+1} < \dots & m(\operatorname{Top}(\mathfrak{W}_n)) \xrightarrow[n \to \infty]{} 0, \\ \text{then } \exists \text{ PPT } \tau \coloneqq \varprojlim_{n \to \infty} \mathfrak{W}_n \text{ of } (0,1) = U(\mathfrak{W}_n) \text{ so that for } m\text{-a.e.} \\ x \in (0,1), \ T_{\mathfrak{W}_n}(x) = \tau(x) \quad \forall n \text{ large.} \\ \hline \begin{array}{c} \textcircled{ : } \\ (2) \text{ If in addition, infinitely many of the refinements} \\ \mathfrak{W}_n < \mathfrak{W}_{n+1} \text{ are transitive then } \lim_{n \to \infty} \mathfrak{W}_n \text{ is ergodic.} \end{array}$

Homogeneous refinement: $\mathfrak{W}' > \mathfrak{W}$ where

$$W'_j = {}^{k'} \widetilde{W} \text{ where } \widetilde{W} := \bigotimes_{q=1}^Q (W_{\kappa_q})^{\circledast_{s_q}}.$$

Homogeneous refinement: $\mathfrak{W}' > \mathfrak{W}$ where

$$W'_j = {}^{k'} \widetilde{W} \text{ where } \widetilde{W} := \bigotimes_{q=1}^Q (W_{\kappa_q})^{\circledast_{s_q}}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Here, for columns W & W' with equal width,

• $W \odot W'$ is the stacking of W' over W;

Homogeneous refinement: $\mathfrak{W}' > \mathfrak{W}$ where

$$W'_j = {}^{k'} \widetilde{W} \text{ where } \widetilde{W} := \bigotimes_{q=1}^Q (W_{\kappa_q})^{\circledast_{s_q}}.$$

Here, for columns W & W' with equal width,

- $W \odot W'$ is the stacking of W' over W;
- $\{{}^{q}W_{k}: 1 \le k \le q\}$ is the castle obtained by slicing W into q subcolumns of equal width & height.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Homogeneous refinement: $\mathfrak{W}' > \mathfrak{W}$ where

$$W'_j = {}^{k'} \widetilde{W} \text{ where } \widetilde{W} := \bigotimes_{q=1}^Q (W_{\kappa_q})^{\circledast_{s_q}}.$$

Here, for columns W & W' with equal width,

- $W \odot W'$ is the stacking of W' over W;
- $\{{}^{q}W_{k}: 1 \le k \le q\}$ is the castle obtained by slicing W into q subcolumns of equal width & height.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• $W^{\odot q} := \bigotimes_{k=1}^{q} {}^{q} W_k.$

Homogeneous refinement: $\mathfrak{W}' > \mathfrak{W}$ where

$$W'_j = {}^{k'} \widetilde{W} \text{ where } \widetilde{W} := \bigotimes_{q=1}^Q (W_{\kappa_q})^{\circledast_{s_q}}.$$

Here, for columns W & W' with equal width,

- $W \odot W'$ is the stacking of W' over W;
- $\{{}^{q}W_{k}: 1 \le k \le q\}$ is the castle obtained by slicing W into q subcolumns of equal width & height.
- $W^{\odot q} := \bigotimes_{k=1}^{q} {}^{q} W_k.$

If $\mathfrak{W}_n \prec \mathfrak{W}_{n+1} \prec \ldots$ are homogeneous refinements, then

$$\lim_{n \to \infty} \mathfrak{W}_n = \lim_{n \to \infty} \widetilde{W}_n \text{ is an odometer.}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Step function on a castle \mathfrak{W} : a function $F : \mathfrak{W} \to \mathbb{R}_+$ which is constant on each interval of \mathfrak{W} .

Step function on a castle \mathfrak{W} : a function $F : \mathfrak{W} \to \mathbb{R}_+$ which is constant on each interval of \mathfrak{W} .

Castle process: (\mathfrak{W}, F) where \mathfrak{W} is a castle and $F : \mathfrak{W} \to \mathbb{R}_+$ is a step feunction.

Step function on a castle \mathfrak{W} : a function $F : \mathfrak{W} \to \mathbb{R}_+$ which is constant on each interval of \mathfrak{W} .

Castle process: (\mathfrak{W}, F) where \mathfrak{W} is a castle and $F : \mathfrak{W} \to \mathbb{R}_+$ is a step feunction.

Symmetric random variable: $Y = (\Omega, \eta)$ where Ω is a finite set & $\eta: \Omega \to \mathbb{R}_+$. Here the distribution is

$$\operatorname{Prob}(Y \in A) \coloneqq rac{\# \mathfrak{y}^{-1} A}{\# \Omega}.$$

Step function on a castle \mathfrak{W} : a function $F : \mathfrak{W} \to \mathbb{R}_+$ which is constant on each interval of \mathfrak{W} .

Castle process: (\mathfrak{W}, F) where \mathfrak{W} is a castle and $F : \mathfrak{W} \to \mathbb{R}_+$ is a step feunction.

Symmetric random variable: $Y = (\Omega, \eta)$ where Ω is a finite set & $\eta: \Omega \to \mathbb{R}_+$. Here the distribution is

$$\operatorname{Prob}(Y \in A) \coloneqq \frac{\# \mathfrak{y}^{-1} A}{\# \Omega}$$

 (Ω, \mathfrak{y}) -distributed castle process: (\mathfrak{W}, F) where

$$\mathfrak{W} = \{ W_{\omega} = (I_{1,\omega}, \dots, I_{h,\omega}) : \omega \in \Omega \} \& \exists c = c(\mathfrak{W}, F) \text{ such that}$$

$$E(W_{\omega}) \coloneqq \frac{1}{h} \sum_{k=1}^{h} F(I_{k,\omega}) = c \mathfrak{y}(\omega).$$

Fix a symmetric rv $Y = (\Omega, \mathfrak{y})$ and let $\Delta_n \downarrow 0$, $\sum_n \Delta_n < \infty$.

Fix a symmetric rv $Y = (\Omega, \mathfrak{y})$ and let $\Delta_n \downarrow 0$, $\sum_n \Delta_n < \infty$. There is a homogeneously refining sequence $((\mathfrak{W}_n, F_n))_{n \ge 1}$ of (Ω, \mathfrak{y}) -dist'd castle processes with heights h_n so that for each $n \ge 1$

Fix a symmetric rv $Y = (\Omega, \mathfrak{y})$ and let $\Delta_n \downarrow 0$, $\sum_n \Delta_n < \infty$. There is a homogeneously refining sequence $((\mathfrak{W}_n, F_n))_{n \ge 1}$ of (Ω, \mathfrak{y}) -dist'd castle processes with heights h_n so that for each $n \ge 1$ (i) $m([F_n \neq F_{n+1}]) < \Delta_n$,

Fix a symmetric rv $Y = (\Omega, \mathfrak{y})$ and let $\Delta_n \downarrow 0$, $\sum_n \Delta_n < \infty$. There is a homogeneously refining sequence $((\mathfrak{W}_n, F_n))_{n \ge 1}$ of (Ω, \mathfrak{y}) -dist'd castle processes with heights h_n so that for each $n \ge 1$ (i) $m([F_n \neq F_{n+1}]) < \Delta_n$, (ii) $\exists \gamma(h_n) \le \gamma(h_n + 1) \le \cdots \le \gamma(h_{n+1})$ so that $\gamma(k+1) - \gamma(k) \le \Delta_n$ and $(S_k(F_{n+1}))$

$$\mathfrak{v}\left(\frac{S_k(F_{n+1})}{k\gamma(k)},\mathfrak{y}\right) < \Delta_{n+1}.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Here $\gamma(h_n) = c(\mathfrak{W}_n, F_n)$.

Fix a symmetric rv $Y = (\Omega, \mathfrak{y})$ and let $\Delta_n \downarrow 0$, $\sum_n \Delta_n < \infty$. There is a homogeneously refining sequence $((\mathfrak{W}_n, F_n))_{n \ge 1}$ of (Ω, \mathfrak{y}) -dist'd castle processes with heights h_n so that for each $n \ge 1$ (i) $m([F_n \neq F_{n+1}]) < \Delta_n$, (ii) $\exists \gamma(h_n) \le \gamma(h_n + 1) \le \cdots \le \gamma(h_{n+1})$ so that $\gamma(k+1) - \gamma(k) \le \Delta_n$ and $\mathfrak{v}\left(\frac{S_k(F_{n+1})}{k\gamma(k)}, \mathfrak{y}\right) < \Delta_{n+1}$.

Here $\gamma(h_n) = c(\mathfrak{W}_n, F_n)$. (iii) for each $k > \Delta_{n+1}$ and $\omega \in \Omega$,

$$P(S_k(F_{n+1}) = \mathfrak{y}(\omega)k\gamma(k)(1 \pm \Delta_{n+1}) \| W_{\omega}^{(n+1)}) > 1 - \Delta_{n+1}.$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Let $(\mathfrak{M}_n, \mathcal{F}_n)$ be the n^{th} castle process.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Let (\mathfrak{W}_n, F_n) be the n^{th} castle process. $F_n: W_j^{(n)} \to \mathbb{R}_+$ given by block $w_j^{(n)} \in \mathbb{R}_+^{h_n}$.

Let (\mathfrak{W}_n, F_n) be the n^{th} castle process. $F_n : W_j^{(n)} \to \mathbb{R}_+$ given by block $w_j^{(n)} \in \mathbb{R}_+^{h_n}$. Identify $F_n : \mathfrak{W}_n \to \mathbb{R}_+$ with the block array $\{w_j^{(n)} : 1 \le j \le k_n\}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let (\mathfrak{W}_n, F_n) be the n^{th} castle process. $F_n : W_j^{(n)} \to \mathbb{R}_+$ given by block $w_j^{(n)} \in \mathbb{R}_+^{h_n}$. Identify $F_n : \mathfrak{W}_n \to \mathbb{R}_+$ with the block array $\{w_j^{(n)} : 1 \le j \le k_n\}$. Recursions for the block arrays: of form

$$w_{\ell}^{(n+1)} = \left(\bigotimes_{q=1}^{Q_n} (w_{\kappa_q}^{(n)})^{\odot s_q} + \mathcal{E}_{q,\ell}^{(n)} \right)^{\odot s_{Q_n}} + \mathcal{D}_{\ell}^{(n)}$$

where \odot means concatenation and $\mathcal{E}_{q,\ell}^{(n)} \in \mathbb{R}^{s_q h_n}_+$ $(1 \le q \le Q_n)$ are "small modifications".

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

For $w \in \mathbb{R}^h_+$ a block,

$$M(w) \coloneqq \max_{1 \leq j \leq h} w_j, \quad \Sigma(w) \coloneqq \sum_{1 \leq j \leq h} w_j \& E(w) \coloneqq \frac{\Sigma(w)}{|w|}.$$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

For $w \in \mathbb{R}^h_+$ a block,

$$M(w) \coloneqq \max_{1 \leq j \leq h} w_j, \quad \Sigma(w) \coloneqq \sum_{1 \leq j \leq h} w_j \& E(w) \coloneqq \frac{\Sigma(w)}{|w|}.$$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

$$M(w^{\odot J}) = M(w) \& E(w^{\odot J}) = E(w).$$

For $w \in \mathbb{R}^h_+$ a block,

$$M(w) \coloneqq \max_{1 \leq j \leq h} w_j, \quad \Sigma(w) \coloneqq \sum_{1 \leq j \leq h} w_j \& E(w) \coloneqq \frac{\Sigma(w)}{|w|}.$$

$$M(w^{\odot J}) = M(w) \& E(w^{\odot J}) = E(w).$$

Block $w \in \mathbb{R}^h_+$ is ϵ -normalized if

$$S_k(w) = kE(w)(1 \pm \epsilon) \quad \forall \ k \ge \frac{\epsilon \Sigma(w)}{M(w)}.$$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

For $w \in \mathbb{R}^h_+$ a block,

$$M(w) \coloneqq \max_{1 \leq j \leq h} w_j, \quad \Sigma(w) \coloneqq \sum_{1 \leq j \leq h} w_j \& E(w) \coloneqq \frac{\Sigma(w)}{|w|}.$$

$$M(w^{\odot J}) = M(w) \& E(w^{\odot J}) = E(w).$$

Block $w \in \mathbb{R}^h_+$ is ϵ -normalized if

$$S_k(w) = kE(w)(1 \pm \epsilon) \quad \forall \ k \ge \frac{\epsilon \Sigma(w)}{M(w)}.$$

If w is a block & $\epsilon > 0$, then $w^{\odot m}$ is ϵ - normalized \forall large m.

12. Basic Lemma for 🅽

For:
$$0 < \Delta < 1$$
, $w \in \mathbb{R}^{h}_{+} \Delta$ -normalized,
 $0 < \kappa \leq \Delta E(w), \ \vartheta > 0, \ q > \frac{1}{\Delta} \&$ for $\mu \in \mathbb{N}$ large enough: if
 $m \coloneqq \mu q \&$
 $w' = w^{(\mu)} \coloneqq w^{\odot m} + \kappa q h \mathbb{1}_{[1,mh] \cap qh\mathbb{Z}},$

then

(i)
$$w' \text{ is } \mathfrak{d}\text{-normalized};$$

(ii) $E(w') = E(w) + \kappa;$
(iii) $P(S_k(w') = S_k(w^{\odot m}) \quad \forall \ 1 \le k \le \sqrt{\Delta}qh) \ge 1 - \sqrt{\Delta};$
(iv) $S_k(w') = kE(w)(1 \pm 2\sqrt{\Delta}) \quad \forall \quad \sqrt{\Delta}qh \le k \le qh;$
(v) $S_k(w') = k(E(w) + \kappa)(1 \pm (\Delta \land \frac{1}{k} + \frac{\Delta qh}{k})) \quad \forall \ k > qh.$

13. Block average changes

- $0 < \Delta < 1, h \in \mathbb{N}$ & $\mathcal{F} \subset \mathbb{R}^{h}_{+}$ a Δ -normalized *h*-block array.
- For $J \subset (1, \infty)$ finite, $\forall \beta > 0 \& \mathcal{E} > 0$, and $Q \in \mathbb{N}$ large enough, there exist
- an *E*-normalized, *Qh*-block array

$$\{v(w,t): w \in \mathcal{F}, t \in J\} \subset \mathbb{R}^{Qh}_+$$

so that for each $w \in \mathcal{F} \& t \in J$,

• $v(w,t) \Delta$ -approximates w in the sense that

$$P(S_k(v(w,t)) = S_k(w^{\odot Q}) \quad \forall \ 1 \le k \le \Delta h) > 1 - 2\Delta h$$

and

$$E(v(w,t)) = tE(w).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

14. Simultaneous normalization of block partial sums Let $0 < \Delta < 1, h \in \mathbb{N}$ and let $\mathcal{F} \subset \mathbb{R}^h_+$ be a Δ -normalized *h*-block array then

 $\forall \quad \mathsf{\Gamma} > 1, \ \beta > \mathsf{0}, \ \mathcal{E} > \mathsf{0} \quad \& \quad Q \in \mathbb{N} \quad \text{large enough},$

there exists a \mathcal{E} -normalized, Qh-block array

$$\mathcal{V} = \{v(w): w \in \mathcal{F}\} \subset \mathbb{R}^{Qh}_+$$

so that so that for each $w \in \mathcal{F}$,

(i)
$$E(v(w)) = \Gamma E(w);$$

(ii)
$$P(S_k(v(w)) = S_k(w^{\odot Q}) \quad \forall \ 1 \le k \le \Delta h) > 1 - 2\Delta.$$

Moreover there are constants $\gamma(k) > 0$, $(\Delta h \le k \le Qh)$ so that

(iii)
$$1 = \gamma([\Delta h]) \le \gamma([\Delta h] + 1) \le \ldots \le \gamma(Qh) = \Gamma;$$

(iv)
$$0 \le \gamma(k+1) - \gamma(k) \le \beta$$

and such that for each $w \in \mathcal{F}$,

(iii)
$$P([S_k(v(w)) = k\gamma(k)E(w)(1 \pm \mathcal{E})]) \ge 1 - \mathcal{E} \quad \forall \ k > \mathcal{E}Qh.$$

15. Inductive stage in **G** for Y = 1, 2 w.p. $\frac{1}{2}$: Intermediates

▲口▶ ▲圖▶ ▲圖▶ ▲圖▶ ― 圖 … 釣ぬ⊙

16. Inductive stage in **G** for Y = 1, 2 w.p. $\frac{1}{2}$: Next

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

17. Consequences for infinite ergodic theory

For each $Y \in \mathbb{RV}((0,\infty))$ there is a CEMPT (X, \mathcal{B}, m, T) : and a 1-regularly varying function a(n) so that

$$\frac{S_n^{(T)}(f)}{a(n)} \xrightarrow{\mathfrak{d}} Y \int_X f dm \quad \forall \ f \in L^1(m)_+.$$

17. Consequences for infinite ergodic theory

For each $Y \in \mathbb{RV}((0,\infty))$ there is a CEMPT (X, \mathcal{B}, m, T) : and a 1-regularly varying function a(n) so that

$$\frac{S_n^{(T)}(f)}{a(n)} \xrightarrow{\mathfrak{d}} Y \int_X f dm \quad \forall \ f \in L^1(m)_+.$$

Proof By $[\mathscr{F}] \exists$ an ESP $(\Omega, \mathcal{F}, P, S, \varphi)$ and a 1-regularly varying function a(n) so that

$$\frac{\varphi_n}{b(n)}\xrightarrow[n\to\infty]{}\frac{1}{Y}.$$

17. Consequences for infinite ergodic theory

For each $Y \in \mathbb{RV}((0,\infty))$ there is a CEMPT (X, \mathcal{B}, m, T) : and a 1-regularly varying function a(n) so that

$$\frac{S_n^{(T)}(f)}{a(n)} \xrightarrow{\mathfrak{d}} Y \int_X f dm \quad \forall \ f \in L^1(m)_+.$$

Proof By $[\mathcal{M}] \exists$ an ESP $(\Omega, \mathcal{F}, P, S, \varphi)$ and a 1-regularly varying function a(n) so that

$$\frac{\varphi_n}{b(n)} \xrightarrow[n\to\infty]{} \frac{1}{Y}.$$

Define (X, \mathcal{B}, m, T) by $X := \{(\omega, n) : \omega \in \Omega, 1 \le n \le \varphi(\omega)\}, m(A \times \{n\}) = P(A \cap [\varphi \ge n]) \&$ $T(x, n) := \begin{cases} (Sx, 1) & n = \varphi(x), \\ (x, n+1) & n < \varphi(x). \end{cases}$

18. Conclusion of proof by inversion Let $a := b^{-1}$, then *a* is 1-regularly varying.

18. Conclusion of proof by inversion Let $a := b^{-1}$, then a is 1-regularly varying.

By the ratio ergodic theorem, it suffices to show that

$$\frac{1}{a(n)}S_n^{(T)}(1_{\Omega})\xrightarrow[n\to\infty]{} Y.$$

18. Conclusion of proof by inversion Let $a := b^{-1}$, then a is 1-regularly varying.

By the ratio ergodic theorem, it suffices to show that

$$\frac{1}{a(n)}S_n^{(T)}(1_{\Omega})\xrightarrow[n\to\infty]{} Y.$$

Proof

 $S_n(1_\Omega) > K \iff \varphi_K < n.$
18. Conclusion of proof by inversion Let $a := b^{-1}$, then a is 1-regularly varying.

By the ratio ergodic theorem, it suffices to show that

$$\frac{1}{a(n)}S_n^{(T)}(1_{\Omega})\xrightarrow[n\to\infty]{} Y.$$

Proof

$$S_{n}(1_{\Omega}) > K \iff \varphi_{K} < n.$$

$$\therefore \text{ for } t > 0, \ P(Y = t) = 0, \ n, N \ge 1 \& N \sim ta(n),$$

$$P(S_{n}(1_{\Omega}) > ta(n)) \approx P(S_{n}(1_{\Omega}) > N)$$

$$= P(\varphi_{N} < n)$$

$$\approx P(\varphi_{N} < \frac{b(N)}{t})$$

$$\xrightarrow{n \to \infty} P(\frac{1}{Y} < \frac{1}{t})$$

$$= P(Y > t). \quad \square$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

19. The End

- ◆ □ ▶ → @ ▶ → 注 → ↓ 注 → りへで

19. The End

Thank you for listening.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで