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1. Stationary, stochastic processes

● stationary process (SP): (Ω,A,P,S , ϕ) where
(Ω,A,P,S) is a PPT & ϕ ∶ Ω→ R measurable.

Call the SP (Ω,A,P,S , ϕ):

- positive if ϕ ≥ 0;

- ergodic (ESP) if (Ω,A,P,S) is ergodic.

- independent (identically distributed) (IIDSP) if {ϕ ○ Sn ∶ n ≥ 0} are
independent random variables.
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2. Distributional convergence
For (X ,d) a metric space set

RV(R+) ∶= {random variables on X} ≅ P(X ) byY ↭ distY .

For Yn, Y ∈ RV (X ) say that Yn
distÐÐÐ→
n→∞

Y if

E(g(Yn)) ÐÐÐ→
n→∞

E(g(Y )) ∀ g ∈ CB(X ), i.e. distYn
P(X)ÐÐÐ→
n→∞

distY .

d-Vasershtein distance: v = vd on RV(X ):

v(Y1,Y2) ∶=

min{E(d(Z1,Z2)) ∶ Z = (Z1,Z2) ∈ RV(R+ ×R+), Zi
dist= Yi (i = 1,2)}.

In case (X ,d) is compact, then for Yn, Y ∈ RV (R+),

Yn
distÐÐÐ→
n→∞

Y ⇐⇒ v(Yn,Y ) ÐÐÐ→
n→∞

0.
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2. Classics

Let γ ∈ (0,1] and let (Ω,A,P,S , ϕ) be a positive IIDSP so that

E(ϕ ∧ t) ∝
t→∞

t

A(t) , A(t) γ-reg. var. i.e.
A(xt)
A(t) ÐÐÐ→t→∞

xγ ∀ x > 0.

● Let: ϕn ∶= ∑n
k=1ϕ ○ Sk , b(n) ∶= A−1(n), then

ϕn

b(n)
distÐÐÐ→
n→∞

Zγ where Zγ is γ-stable i.e.(SLT)

E(e−pZγ) = e−cp
γ (c > 0).

Note that Z1 is constant.
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3. 1-regularly varying normalizing constants

A. & Omri Sarig, [ETDS, 2014] ∃ +-ive ESP (Ω,F ,P,R, ϕ) so that

1

b(n)
n−1

∑
k=0

ϕ ○ Rk distÐÐÐ→
n→∞

e
1
2
N(0,1)2

where b(n) ∝ n
√

log n and N(0,1) is standard normal.

Info. R = τϕ where τ is the dyadic adding machine and τ is the
“exchangability waiting time”.

R is aka the “Pascal-adic” or “de Finetti” transformation.
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3. The general positive distributional limit

[®, 2015?] A. & Benjamin Weiss: Let Y ∈ RV (R+), then
∃
● an odometer (Ω,F ,P,S),

● an increasing 1 reg. var. function b ∶ R+ → R+ and

● a positive measurable function ϕ ∶ Ω→ R+ so that

1

b(n)
n−1

∑
k=0

ϕ ○ Sk distÐÐÐ→
n→∞

Y .

, [®, 2015?] Such a function exists on any EPPT.



4. Strong distributional convergence
For (X ,B,m) a measure space, Fn ∶ X → [0,∞] measurable,
P ∈ P(X ,B), P ≪ m and
Y ∈ RV ([0,∞]) ∶= {random variables on [0,∞]}:

Fn
P−distÐ→
n→∞

Y if P − dist.Fn Ð→
n→∞

dist.Y .

Fn
dÐ→

n→∞
Y if Fn

P−distÐ→
n→∞

Y ∀ P ∈ P(X ,B), P ≪ m.

¶[Eagleson] If (X ,B,m,T , f ) is an ESP, a(n) → ∞ &

1

a(n)
n−1

∑
k=0

f ○T k P−distÐÐÐÐÐ→
n→∞

Y for some P ∈ P(X ,B) P ≪ m,

then
1

a(n)
n−1

∑
k=0

f ○T k dÐÐÐ→
n→∞

Y .
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5. The general case for [®]

Fix Y ∈ RV(R+). As above there is an odometer (Y ,C, ν, τ) and a
function F ∶ Y → R+ satisfying [®].

Let (Ω,F ,P,S) be an EPPT.

● ∃ A ∈ F+ & Π ∶ (A,FA,PA,SA) → (Y ,C, ν, τ), whence

(A,FA,PA,SA,F ○Π) satisfies [®].

Using Eagleson’s theorem and monotonicity, can show that
(Ω,F ,P,S , f ) satisfies [®] where f = 1AF ○Π :-

If Kn(x) = #{k ≤ n ∶ S(x) ∈ A} then Kn(x) ∼ m(A)n and

Sn(f )(T)(f ) = S
(TA)

Kn
(F ○Π).

For ε > 0, N± ∶= (1 ± ε)m(A)n, for large n with high probability,

(1 − ε)
S
(TA)

N−
(F ○Π)

b(N−)
≲ S

(T)

n (f )
b(n) ≲ (1 + ε)

S
(TA)

N+
(F ○Π)

b(N+)
.
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6. Castles

Castle W = {Wj ∶ 1 ≤ j ≤ k} where the Wj = (I1,j , I2,j , . . . , Ih,j) are
columns of intervals with equal widths and heights h =∶ ∣W∣.

The union of W is U(W) ∶= ⋃k,j Ik,j .

Here, always m(U(W)) = 1 where m = Leb. So sometimes write
U(W) = (0,1).

A Rokhlin tower is a castle with a single column.

Castle W equipped with partial transformation

TW ∶ U(W) ≅ (0,1) → U(W)

defined by the translations Ik,j ↦ Ik+1 mod h,j .
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A Rokhlin tower is a castle with a single column.

Castle W equipped with partial transformation

TW ∶ U(W) ≅ (0,1) → U(W)

defined by the translations Ik,j ↦ Ik+1 mod h,j .
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7. Refinements & inverse limit PPTs

The castle W′ = {W ′

j ∶ 1 ≤ j ≤ k ′}, refines W (W′ ≻W) if

U(W′) = U(W), Top(W′) ⊂ Top(W) & TW′ ∣W∖Top(W)
≡ TW.

where Top(W) ∶= ⋃j Ih,j .

The refinement W′ ≻W is transitive if

m(U(W ) ∩U(W ′)) > 0 ∀ columns W ∈W & W ′ ∈W′.

, (1) If ⋅ ⋅ ⋅ ≺Wn ≺Wn+1 ≺ . . . & m(Top(Wn)) ÐÐÐ→
n→∞

0,

then ∃ PPT τ ∶= lim←Ðn→∞
Wn of (0,1) = U(Wn) so that for m-a.e.

x ∈ (0,1), TWn(x) = τ(x) ∀ n large.

, (2) If in addition, infinitely many of the refinements
Wn ≺Wn+1 are transitive then lim←Ðn→∞

Wn is ergodic.
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7. Rokhlin towers and odometers

Homogeneous refinement: W′ ≻W where

W ′

j =k
′

W̃ where W̃ ∶=
Q

⊚
q=1

(Wκq)⊛sq .

Here, for columns W & W ′ with equal width,

● W ⊙W ′ is the stacking of W ′ over W ;

● {qWk ∶ 1 ≤ k ≤ q} is the castle obtained by slicing W into q
subcolumns of equal width & height.

● W⊙q ∶= ⊚q
k=1

qWk .

If Wn ≺Wn+1 ≺ . . . are homogeneous refinements, then

lim←Ð
n→∞

Wn = lim←Ð
n→∞

W̃n is an odometer.
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8. Step functions & symmetric random variables
Step function on a castle W: a function F ∶W→ R+ which
is constant on each interval of W.

Castle process: (W,F ) where W is a castle and F ∶W→ R+ is
a step feunction.

Symmetric random variable: Y = (Ω,y) where Ω is a finite set
& y ∶ Ω→ R+. Here the distribution is

Prob(Y ∈ A) ∶= #y−1A

#Ω
.

(Ω,y)-distributed castle process: (W,F ) where

W = {Wω = (I1,ω, . . . , Ih,ω) ∶ ω ∈ Ω} & ∃ c = c(W,F ) such that

E(Wω) ∶=
1

h

h

∑
k=1

F (Ik,ω) = cy(ω).
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9. The ESP constructed for symmetric Y

Fix a symmetric rv Y = (Ω,y) and let ∆n ↓ 0, ∑n ∆n < ∞.

R There is a homogeneously refining sequence ( (Wn,Fn) )n≥1 of
(Ω,y)-dist’d castle processes with heights hn so that for each n ≥ 1

(i) m([Fn ≠ Fn+1]) < ∆n,

(ii) ∃ γ(hn) ≤ γ(hn + 1) ≤ ⋅ ⋅ ⋅ ≤ γ(hn+1) so that
γ(k + 1) − γ(k) ≤ ∆n and

v (Sk(Fn+1)

kγ(k) ,y) < ∆n+1.

Here γ(hn) = c(Wn,Fn).

(iii) for each k > ∆n+1 and ω ∈ Ω,

P(Sk(Fn+1) = y(ω)kγ(k)(1 ±∆n+1)∥W (n+1)
ω ) > 1 −∆n+1.
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10. The function constructed from blocks

Let (Wn,Fn) be the nth castle process.

Fn ∶W (n)
j → R+ given by block w

(n)
j ∈ Rhn

+ .

Identify Fn ∶Wn → R+ with the block array {w (n)
j ∶ 1 ≤ j ≤ kn}.

Recursions for the block arrays: of form

w
(n+1)
` = (

Qn

⊙
q=1

(w (n)
κq )⊙sq + E(n)q,` ])

⊙sQn

+D(n)
`

where ⊙ means concatenation and E(n)q,` ∈ Rsqhn
+ (1 ≤ q ≤ Qn) are

“small modifications”.



10. The function constructed from blocks

Let (Wn,Fn) be the nth castle process.

Fn ∶W (n)
j → R+ given by block w

(n)
j ∈ Rhn

+ .

Identify Fn ∶Wn → R+ with the block array {w (n)
j ∶ 1 ≤ j ≤ kn}.

Recursions for the block arrays: of form

w
(n+1)
` = (

Qn

⊙
q=1

(w (n)
κq )⊙sq + E(n)q,` ])

⊙sQn

+D(n)
`

where ⊙ means concatenation and E(n)q,` ∈ Rsqhn
+ (1 ≤ q ≤ Qn) are

“small modifications”.



10. The function constructed from blocks

Let (Wn,Fn) be the nth castle process.

Fn ∶W (n)
j → R+ given by block w

(n)
j ∈ Rhn

+ .

Identify Fn ∶Wn → R+ with the block array {w (n)
j ∶ 1 ≤ j ≤ kn}.

Recursions for the block arrays: of form

w
(n+1)
` = (

Qn

⊙
q=1

(w (n)
κq )⊙sq + E(n)q,` ])

⊙sQn

+D(n)
`

where ⊙ means concatenation and E(n)q,` ∈ Rsqhn
+ (1 ≤ q ≤ Qn) are

“small modifications”.



10. The function constructed from blocks

Let (Wn,Fn) be the nth castle process.

Fn ∶W (n)
j → R+ given by block w

(n)
j ∈ Rhn

+ .

Identify Fn ∶Wn → R+ with the block array {w (n)
j ∶ 1 ≤ j ≤ kn}.

Recursions for the block arrays: of form

w
(n+1)
` = (

Qn

⊙
q=1

(w (n)
κq )⊙sq + E(n)q,` ])

⊙sQn

+D(n)
`

where ⊙ means concatenation and E(n)q,` ∈ Rsqhn
+ (1 ≤ q ≤ Qn) are

“small modifications”.



11. Block statistics & ε-normalizations

For w ∈ Rh
+

a block,

M(w) ∶= max
1≤j≤h

wj , Σ(w) ∶= ∑
1≤j≤h

wj & E(w) ∶= Σ(w)
∣w ∣ .

M(w⊙J) =M(w) & E(w⊙J) = E(w).

Block w ∈ Rh
+

is ε-normalized if

Sk(w) = kE(w)(1 ± ε) ∀ k ≥ εΣ(w)
M(w) .

If w is a block & ε > 0, then w⊙m is ε- normalized ∀ large m.
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12. Basic Lemma for R

For: 0 < ∆ < 1, w ∈ Rh
+

∆-normalized,
0 < κ ≤ ∆E(w), d > 0, q > 1

∆ & for µ ∈ N large enough: if
m ∶= µq &

w ′ = w (µ) ∶= w⊙m + κqh1[1,mh]∩qhZ,

then

w ′ is d-normalized;(i)

E(w ′) = E(w) + κ;(ii)

P(Sk(w ′) = Sk(w⊙m) ∀ 1 ≤ k ≤
√

∆qh) ≥ 1 −
√

∆;(iii)

Sk(w ′) = kE(w)(1 ± 2
√

∆) ∀
√

∆qh ≤ k ≤ qh;(iv)

Sk(w ′) = k(E(w) + κ)(1 ± (∆ ∧ 1
k +

∆qh
k )) ∀ k > qh.(v)



13. Block average changes

● 0 < ∆ < 1,h ∈ N & F ⊂ Rh
+

a ∆-normalized h-block array.

● For J ⊂ (1,∞) finite, ∀ β > 0 & E > 0, and Q ∈ N large
enough, there exist

● an E-normalized, Qh–block array

{v(w , t) ∶ w ∈ F , t ∈ J} ⊂ RQh
+

so that for each w ∈ F & t ∈ J,

● v(w , t) ∆-approximates w in the sense that

P(Sk(v(w , t)) = Sk(w⊙Q) ∀ 1 ≤ k ≤ ∆h) > 1 − 2∆.

and

E(v(w , t)) = tE(w).



14. Simultaneous normalization of block partial sums
Let 0 < ∆ < 1,h ∈ N and let F ⊂ Rh

+
be a ∆-normalized h-block

array then

∀ Γ > 1, β > 0, E > 0 & Q ∈ N large enough,

there exists a E-normalized, Qh–block array

V = {v(w) ∶ w ∈ F} ⊂ RQh
+

so that so that for each w ∈ F ,

E(v(w)) = ΓE(w);(i)

P(Sk(v(w)) = Sk(w⊙Q) ∀ 1 ≤ k ≤ ∆h) > 1 − 2∆.(ii)

Moreover there are constants γ(k) > 0, (∆h ≤ k ≤ Qh) so that

1 = γ([∆h]) ≤ γ([∆h] + 1) ≤ . . . ≤ γ(Qh) = Γ;(iii)

0 ≤ γ(k + 1) − γ(k) ≤ β;(iv)

and such that for each w ∈ F ,

P([Sk(v(w)) = kγ(k)E(w)(1 ± E)]) ≥ 1 − E ∀ k > EQh.(iii)



15. Inductive stage in R for Y = 1,2 w.p. 1
2 : Intermediates



16. Inductive stage in R for Y = 1,2 w.p. 1
2 : Next



17. Consequences for infinite ergodic theory
o For each Y ∈ RV((0,∞)) there is a CEMPT (X ,B,m,T ):
and a 1-regularly varying function a(n) so that

S
(T)

n (f )
a(n)

dÐ→ Y ∫
X
fdm ∀ f ∈ L1(m)+.

Proof By [®] ∃ an ESP (Ω,F ,P,S , ϕ) and a 1-regularly varying
function a(n) so that

ϕn

b(n) ÐÐÐ→n→∞

1

Y
.

Define (X ,B,m,T ) by

X ∶= {(ω,n) ∶ ω ∈ Ω, 1 ≤ n ≤ ϕ(ω)}, m(A×{n}) = P(A∩[ϕ ≥ n]) &

T (x ,n) ∶=
⎧⎪⎪⎨⎪⎪⎩

(Sx ,1) n = ϕ(x),
(x ,n + 1) n < ϕ(x).
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(x ,n + 1) n < ϕ(x).



17. Consequences for infinite ergodic theory
o For each Y ∈ RV((0,∞)) there is a CEMPT (X ,B,m,T ):
and a 1-regularly varying function a(n) so that

S
(T)

n (f )
a(n)

dÐ→ Y ∫
X
fdm ∀ f ∈ L1(m)+.
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18. Conclusion of proof by inversion
Let a ∶= b−1, then a is 1-regularly varying.

By the ratio ergodic theorem, it suffices to show that

1

a(n)S
(T)

n (1Ω) ÐÐÐ→
n→∞

Y .

Proof
Sn(1Ω) > K ⇐⇒ ϕK < n.

∴ for t > 0, P(Y = t) = 0, n,N ≥ 1 & N ∼ ta(n),

P(Sn(1Ω) > ta(n)) ≈ P(Sn(1Ω) > N)
= P(ϕN < n)

≈ P(ϕN < b(N)
t

)

ÐÐÐ→
n→∞

P( 1

Y
< 1

t
)

= P(Y > t). 2�
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19. The End

Thank you for listening.



19. The End

Thank you for listening.


