Moebius Function: on the MISSING LOG-factor

ET ALIA

Olivier Ramaré

December 8, 2016

THREE DEFINITIONS OF MOEBIUS FUNCTION:

- ▶ Multiplicative fct with $\mu(p) = -1$, $\mu(p^k) = 0$ ($k \ge 2$),
- Convolution inverse of 1,
- Coefficients of 1/ζ(s)

We concentrate on the *second* definition.

Combinatorial nature was functional analysis pbs!

Meissel 1854:
$$\sum_{n \leqslant x} \mu(n) [x/n] = 1$$

$$\sum_{n \leqslant x} \mu(n) \sum_{m \leqslant x/n} 1 = \sum_{\ell \leqslant x} \sum_{n \mid \ell} \mu(n)$$

$$\longrightarrow \sum_{n \leqslant x} \mu(n) \{x/n\} = -1 + x \sum_{n \leqslant x} \frac{\mu(n)}{n}$$

Three aspects:

- Error term treatment LHS: $\mu(n)$ contaminated by $\{\frac{x}{n}\}$ \longrightarrow RHS: no contamination!
- Identity Is it an Accident or a Feature?

No error term!

Log-factor Trivial bounds: (LHS: x) / (RHS: $x \log x$),

CONSEQUENCES:

Prime Number Theorem
$$\rightarrow \sum_{n \leqslant x} \mu(n) \{x/n\} = o(x)$$

(Gram 1884):
$$\left|\sum_{n \leqslant x} \frac{\mu(n)}{n}\right| \leqslant 1$$

- - -

(MacLeod, 1994):
$$\sum_{n \leqslant x} \mu(n) \frac{\{x/n\}^2 - \{x/n\}}{x/n} = x \sum_{n \leqslant x} \frac{\mu(n)}{n} - \sum_{n \leqslant x} \mu(n) - 2 + \frac{2}{x}$$

Just curiosities? Better understanding possible?

A general Theorem:

Theorem

Let g be a multiplicative function, $|g(p^{\nu})| \leq K$.

$$\left|\sum_{n \leq x} \frac{g(n)}{n}\right| \leq \frac{3K + 3}{\log x} \sum_{n \leq x} \frac{|g(n)| + |\mathbb{1} \star g|(n)}{n}$$

(S. Selberg, 1954):
$$0 \leqslant \sum_{n \leqslant x} \frac{\mu(n)}{2^{\omega(n)} n} \ll 1/\sqrt{\log x}$$

We can rebuild μ with $f \star f$ and $f(n) = \mu(n)/2^{\omega(n)} \dots$

We loose the divisor function!

LANDAU EQUIVALENCE THEOREM (1912)

Theorem

The five propositions are equivalent:

- $\#\{primes \leq x\}$ asymptotic to $x/\log x$.
- $M(x) = \sum_{n \leq x} \mu(n)$ is o(x).
- $m(x) = \sum_{n \leqslant x} \mu(n)/n$ is o(1).
- $\psi(x) = \sum_{n \le x} \Lambda(n)$ is asymptotic to x.
- $\tilde{\psi}(x) = \sum_{n \leq x} \Lambda(n)/n$ is $\log x \gamma + o(1)$.

$$\Lambda(n) = egin{cases} \log p & \text{when } n = p^{\gamma} \\ 0 & \text{else.} \end{cases}$$

 $m \to M$ and $\tilde{\psi} \to \psi$: (surprisingly) easy!

Quantitative results? Loss of the prime-number density?

 Λ or μ : winning a log-factor is necessary!

Integration by parts?

$$\tilde{\psi}(x) - \log x = \frac{\psi(x) - x}{x} + 1 + \int_1^x \frac{(\psi(t) - t)dt}{t^2}$$

From ψ to $\tilde{\psi}$: false for Beurling integers!

Beurling integers: the semi-group over primes from $[1, \infty)$

(Diamond & Zhang, 2012)

An equivalent statement for Moebius ??

(Axer, 1910): *qualitative aspect*We need a *quantitative* equivalence

Theorem (OR, 2013 + D.Platt, 2016)

There exists c > 0 such that, when $x \ge 10$:

$$\left| ilde{\psi}(x) - \log x + \gamma \right| \ll \max_{x \leqslant y \leqslant 2x} \frac{\left| \psi(y) - y \right|}{y} + \exp \left(-c \frac{\log x}{\log \log x} \right).$$

Same for primes in arithmetic progressions.

Primes $\leq x$ require zero-free region up to $\log x$

Hence (numerically)

Verifying RH upto H gives control for x upto e^{H} !!

Sketch of the *now*-proof:

$$\tilde{\psi}(x) - \log x + \gamma = \frac{\psi(x) - x}{x} + \text{Smoothed version of } \int_{x}^{\infty} \frac{(\psi(t) - t)dt}{t^2}$$

controlled by $\max_{x < y \leqslant 2x} |\psi(y) - y|/y$

+ Correction from smoothed to unsmoothed

a very convergent sum over the zeroes

Generalizes to primes in arith. prog. An even better smoothing (Platt & OR, 2016)

But NOT to $M \rightarrow m$?? No zeroes but ...

Theorem (OR, 2016?)

There exists c > 0 such that, when $x \ge 10$:

$$|m(x)| \ll \max_{x \leqslant y \leqslant 2x} \frac{|M(y)|}{y} + \exp\left(-c\frac{\log x}{\log\log x}\right).$$

Yipee!!

And still in progress :)

... But numerically very bad! Bounds for $1/\zeta(s)$...

Two consequences:

To motivate further work...

$$\left|\sum_{n\leqslant x}\Lambda(n)/n-\log x+\gamma\right|\leqslant \frac{1}{149\log x}\quad (x\geqslant 23)$$

(Rosser & Schoenfeld, 1962): 2 instead of 149.

$$\left| \sum_{n \le x} \Lambda(n) / n - \log x + \gamma \right| \le \frac{2}{(\log x)^2} \quad (x > 1)$$

No ancestors:)

Wanted and final would be: $\varepsilon/(\log x)^2$

Related work by P.Dusart, H.Kadiri, A.Lumley ...

I believe that there exists A > 1 such that

$$|m(x)| \stackrel{?}{\ll} \max_{x/A < y \leqslant xA} |M(y)|/y + x^{-1/4}$$

And in fact

$$|m(x)| \stackrel{?}{\ll} \max_{x/A < y \leqslant xA} |\psi(y) - y|/y + x^{-1/4}$$

This one would be most interesting since we can express $|\psi(y) - y|$ in terms of the zeros of $\zeta(s)$.

(Trivially) True under RH
Trivial: with a log x in front
And with a \(\sqrt{log x} \) in front?

How to generalize Meissel's proof, II?

MEISSEL IDENTITY READS ALSO

$$\frac{1}{x}\int_{1}^{x}M(x/t)\frac{\{t\}}{t}dt=m(x)-\frac{M(x)}{x}-\frac{\log x}{x}$$

(BALAZARD, 2012) REWROTE THE FIRST MACLEOD IDENTITY:

$$\frac{1}{x} \int_{1}^{x} M(x/t) \frac{(2\{t\} - 1)t + \{t\} - \{t\}^{2}}{t^{2}} dt$$

$$= m(x) - \frac{M(x)}{x} - \frac{2}{x} + \frac{2}{x^{2}}$$

Oldies? Good for Waste-basket?

The situation has been further cleared by F. Daval:

Theorem (Daval, 2016)

Select $h: [0,1] \to \mathbb{C}$, continuous, $\int_0^1 h(u) du = 1$. When $x \ge 1$:

$$\frac{1}{x} \int_{1}^{x} M(x/t) \left(1 - \frac{1}{t} \sum_{n \le t} h(n/t) \right) dt$$

$$= m(x) - \frac{M(x)}{x} - \frac{1}{x} \int_{1/x}^{1} \frac{h(y)}{y} dy$$

"Riemann integral-remainder"

 $h = 1 \rightarrow \text{Meissel identity}$ $h = 2t \rightarrow \text{MacLeod identity}$

... functional analysis comes in!

Other streams of identities

(Gram, 1884), (MacLeod, 1994), (Balazard, 2012), (OR, 2015)

$$\sum_{n \leqslant x} \frac{\mu(n)}{n} \log\left(\frac{x}{n}\right) - 1 = \frac{6 - 8\gamma}{3x} - \frac{6 - 4\gamma}{x^2} + \frac{6 - 4\gamma}{3x^4}$$

$$(0 \leqslant t^2 h'(t) \leqslant \frac{7}{4} - \gamma) \qquad -\frac{1}{x} \int_1^x M(x/t) h'(t) dt$$

$$\sum_{n \leqslant x} \frac{1}{n} \log(x/n) - 1 \leqslant \frac{1}{389 \log x}$$

$$(x \geqslant 3200)$$

THE PROBLEM AT LARGE

GIVEN $F(t): [1, \infty) \to \mathbb{C}$ e.g. F(t) = 1, Find H, G & C such that

$$\sum_{n \leqslant x} \frac{\mu(n)}{n} \mathbf{F}(x/n) - \mathbf{C} \frac{\mathbf{M}(x)}{x}$$

$$\int_{1}^{\infty} |F(t)| dt/t = \infty$$

$$\int_{1}^{\infty} |G(t)| dt/t < \infty$$
H smooth and small

$$=\frac{1}{x}\int_{1}^{x}M(x/t)G(t)dt+H(x)$$

With F = 1, many solutions!! With $F = \log t$, many solutions!!

BEGINNING OF A THEORY

$$\int_{1}^{x} \left(1 - \frac{1}{t} \sum_{n \le t} h(n/t)\right) dt = \int_{0}^{1} \{ux\} \frac{h(u)}{u} du$$

Aiming at $\int M(x/t)f'(t)dt$.

Given
$$f: [1, \infty) \to \mathbb{C}$$
, solve $f(x) = \int_0^1 \{ux\} \frac{h(u)}{u} du$

Given
$$g: [0,1] \to \mathbb{C}$$
, solve $g(y) = \int_0^1 \frac{\{u/y\}}{u/y} h(u) du$

Hilbert-Schmidt (hence compact) & contracting!

$$\int_0^1 \frac{\{u/y\}}{u/y} h(u) du = \sum_{n \ge 1} \lambda_n \int_0^1 \overline{h(u)} \psi_n(u) du \varphi_n(y)$$

 $|\lambda_n| \leq 1$... Work in progress!

Shatten class $1 + \varepsilon$...

THE LOCALIZATION PROBLEM

(Daval, 2016): The basic lemma

When
$$h: [0,1] \mapsto \mathbb{C}, C^k,$$
 $\int_0^1 h(u) du = 1, \qquad h(0) = h'(0) = 0,$ when $3 \leqslant 2i + 1 \leqslant k - 1, \qquad h^{(2i+1)}(0) = 0,$ when $0 \leqslant \ell \leqslant k - 2, \qquad h^{(\ell)}(1) = 0,$

we have:
$$\left|1 - \frac{1}{t} \sum_{n \le t} h(n/t)\right| \ll 1/t^k$$

This class is larger than the earlier ones!

$$\left| \int_{1}^{x} M(x/t) \left(1 - \frac{1}{t} \sum_{n \le t} h(n/t) \right) dt \right|$$

$$\leq \frac{C_{k}(h)}{x} \int_{1}^{x} M(t) (t/x)^{k-2} dt$$

(Daval, 2016)

k =	3	4	5	6	7
$\min_h C_k(h) \leq$	1.05	1.44	2.52	5.9	13.2

Best h? Best $C_k(h)$?

$$\left| m(x) - \frac{M(x)}{x} \right| \le \frac{33/13}{x^4} \int_1^x |M(t)| t^3 dt + \frac{19/7}{x}$$

Reversed problem: convolving M(t) with as large a class as possible.

$$P(t, \{t\})/t^k$$
. Is that all? $P(t, \{t^2 + 1\})/t^k$?

From Λ to μ / From ψ to M

 $M \rightarrow \psi$: NO for Beurling integers! (Zhang, 1987)

 $M_{\mathcal{Q}}(x) = o(x)$ without $\psi_{\mathcal{Q}}(x) \sim x$.

Quantitative (Kienast, 1926), (Schoenfeld, 1969) Landau

More efficient identities: $\sum \mu(\ell) \log^2 \ell = \sum \mu(\ell) (\Lambda \star \Lambda(d) - \Lambda(d) \log d)$ $\ell \leq x$ $d\ell \leq x$

Only one μ -factor on the RHS:

Analytically?

$$\sum_{\ell \leqslant x} \mu(\ell) \log^3 \ell = \sum_{d\ell \leqslant x} \mu(\ell) \left(\Lambda \star \Lambda \star \Lambda(d) - 3\Lambda \star (\Lambda \log)(d) + \Lambda(d) \log^2 d \right)$$

How to generalize Meissel's proof, III?

Theorem

When
$$x, q \geqslant 1$$
:

When
$$x, q \geqslant 1$$
:
$$\left| \sum_{\substack{n \leqslant x, \\ (n,q)=1}} \frac{\mu(n)}{n} \right| \leqslant 1$$

(Granville & OR, 1996, Lemma 10.2), (Tao, 2010)

... and (Davenport, 1937, Lemma 1)!!

A paper that many of you cite... for another reason!

$$\sum_{n \le x (n,q)=1} \frac{\mu(n)}{2^{\omega(n)}n}$$
 investigated in (S. Selberg, 1954).

Can we do better?

If one removes condition (d, q) = 1 with Moebius:

$$\sum_{\substack{d \leqslant x, \\ (d,q)=1}} \mu(d)/d = \sum_{\substack{d \leqslant x}} \left(\sum_{\substack{\delta \mid d, \\ \delta \mid q}} \mu(\delta) \right) \mu(d)/d$$

$$= \sum_{\delta \mid q} \mu(\delta) \sum_{\ell \leqslant x/\delta} \mu(\delta\ell)/(\delta\ell)$$

$$= \sum_{\delta \mid q} \frac{\mu(\delta)^2}{\delta} \sum_{\substack{\ell \leqslant x/\delta, \\ (\ell,\delta)=1}} \mu(\ell)/\ell$$

Back to square one!!

Landau's way: $\mathbb{1}_{(d,q)=1}\mu(d)/d=g_q\star(\mu(d)/d)$

But g_q has an infinite support. And this leads to heavy numerical difficulties :(

$$\sum_{\ell \geqslant 1} g_q(\ell) \sum_{\mathbf{d} \leqslant x/\ell} \mu(\mathbf{d})/\mathbf{d} \leftarrow \begin{array}{l} \text{Requires explicit} \\ \text{estimate also} \\ \text{when } x/\ell \text{ is small} \end{array}$$

Workaround:

- 1. go from μ to λ (Liouville's function),
- 2. get rid of coprimality by Moebius,
- 3. go from λ to μ .

Combining steps 1 & 3 \longrightarrow more efficient. (OR, 2014 and 2015)

Results

A step with Liouville function, + rather heavy computations, and get:

$$\left| \sum_{\substack{d \leqslant x, \\ (d,q)=1}} \mu(d)/d \right| \leqslant \frac{4q/5}{\phi(q) \log(x/q)} \quad (1 \leqslant q < x).$$

... many similar bounds with $\mu(d) \log^2(x/d)/d$ and $\mu(d)$.

A related problem

(Akhilesh P. & OR, 2016)

Theorem

$$\lim_{K\to\infty}\sup_{q}K\max_{q}\left|\sum_{\substack{k>K,\\(k,q)=1}}\frac{\mu(k)}{k^2}\right|=0.$$

The problem occured while studying G(z) (Akhilesh P. & OR, 2016)

What is the best rate of convergence?

$$\limsup_{K \to \infty} K \log K \max_{q} \left| \sum_{\substack{k > K, \\ (k,q) = 1}} \frac{\mu(k)}{k^2} \right| \geqslant 1.$$

Can one do better? (RH: $K(\log K)^{1/3-\varepsilon}$)

Axer, A. 1910.

Beitrag zur Kenntnis der zahlentheoretischen Funktionen $\mu(n)$ und $\lambda(n)$.

Prace Matematyczno-Fizyczne, 65-95.

Balazard, M. 2012.

Elementary Remarks on Möbius' Function.

Proceedings of the Steklov Intitute of Mathematics, 276, 33-39.

Davenport, H. 1937.

On some infinite series involving arithmetical functions.

Quart. J. Math., Oxf. Ser., 8, 8-13.

Diamond, Harold G., & Zhang, Wen-Bin. 2012.

A PNT equivalence for Beurling numbers.

Funct. Approx. Comment. Math., 46(part 2), 225-234.

Dusart, P. 1998.

Autour de la fonction qui compte le nombre de nombres premiers.

Ph.D. thesis, Limoges, http://www.unilim.fr/laco/theses/1998/T1998_01.pdf.

173 pp.

Dusart, P. 2010.

Estimates of some functions over primes without R. H.

http://arxiv.org/abs/1002.0442.

Granville, A., & Ramaré, O. 1996.

Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients.

Mathematika, 43(1), 73-107.

Kienast, A. 1926.

Über die Äquivalenz zweier Ergebnisse der analytischen Zahlentheorie.

Mathematische Annalen. 95, 427–445.

10.1007/BF01206619.

Landau, Edmund, 1912.

Über einige neuere Grenzwertsätze.

Rendiconti del Circolo Matematico di Palermo (1884 - 1940), 34, 121-131.

MacLeod, R.A. 1994.

A curious identity for the Möbius function.

Utilitas Math., 46, 91–95.

P., Akhilesh, & Ramaré, O. 2016.

Explicit averages of non-negative multiplicative functions: going beyond the main term.

To appear in Colloquium Mathematicum, 30 pp.

Platt, D.J., & Ramaré, O. 2016.

Explicit estimates: from $\Lambda(n)$ in arithmetic progressions to $\Lambda(n)/n$.

To appear in Exp. Math., 15pp.

Ramaré, O. 2002.

Sur un théorème de Mertens

Manuscripta Math., 108, 483-494.

Ramaré, O. 2013a.

Explicit estimates for the summatory function of $\Lambda(n)/n$ from the one of $\Lambda(n)$.

Acta Arith., 159(2), 113-122.

Ramaré, O. 2013b.

From explicit estimates for the primes to explicit estimates for the Moebius function.

Acta Arith., 157(4), 365-379.

Ramaré, O. 2014.

Explicit estimates on the summatory functions of the Moebius function with coprimality restrictions.

Acta Arith., 165(1), 1-10.

Ramaré, O. 2015.

Explicit estimates on several summatory functions involving the Moebius function.

Math. Comp., 84(293), 1359-1387.

Rosser, J.B., & Schoenfeld, L. 1962.

Approximate formulas for some functions of prime numbers.

Illinois J. Math., 6, 64-94.

Schoenfeld, L. 1969.

An improved estimate for the summatory function of the Möbius function.

Acta Arith., 15, 223-233.

Selberg, Sigmund.

Über die Summe $\sum_{n \leq x} \frac{\mu(n)}{nd(n)}$.

12. Skand. Mat.-Kongr., Lund 1953, 264-272 (1954).

Tao, Terence. 2010.

A remark on partial sums involving the Möbius function.

Bull. Aust. Math. Soc., 81(2), 343-349.

Zhang, Wen-Bin. 1987.

A generalization of Halász's theorem to Beurling's generalized integers and its application. Illinois J. Math., 31(4), 645–664.