
Möbius disjointness along ergodic sequences for
uniquely ergodic actions

Joanna Ku laga-Przymus

Nicolaus Copernicus University

Luminy, 08/12/2016

(joint work with M. Lemańczyk)
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Möbius disjointness

µ(n) = Möbius function =


(−1)k , if n = p1 · . . . · pk ,
1, if n = 1,

0, otherwise.

Sarnak’s conjecture (2011):∑
n≤N f (T nx)µ(n) = o(N) (S)

whenever T : X → X is a zero entropy homeomorphism of a
compact metric space, f ∈ C (X ), x ∈ X .
If the above holds, we speak of the Möbius disjointness of T .

Instead of µ one can also consider a multiplicative function u with
|u| ≤ 1 and study an analogous condition (and speak about
u-disjointness).
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Möbius disjointness along random sequences

We will be interested in the following variation of (S):∑
n≤N f (Ranz)u(n) = o(N) (∗)

for each uniquely ergodic R : Z → Z , f ∈ C (Z ) with
∫
f = 0,

z ∈ Z and each mutliplicative u : N→ C, |u| ≤ 1.

Looking at sequences (an) allows us to look at the actions of
lcsc groups, not only G = Z, e.g. at flows.
In fact, we will produce “good” (an) ⊂ Z satisfying (∗) by
producing “good” (bn) ⊂ R, taking an := [bn] and using
suspension flows.
The existence of (an) ⊂ Z for which (∗) holds for u = µ is
not surprising: for any u with

∑
n≤N u(n) = o(N), it suffices

to assume that (an) is increasing sufficiently slowly.
E.g. for u = µ, we can take ([nc ]) with 0 < c < 1.1

1N. Frantzikinakis, private communication
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Möbius disjointness along random sequences

Our sequences differ from the slowly increasing sequences.

Let F : N → C be bdd. Suppose that
∑

n≤N F (rn)F (sn) = o(N)
for any sufficiently large primes r 6= s. Then∑

n≤N F (n)u(n) = o(N)

for any multiplicative function u with |u| ≤ 1.2

F (n) = f (T nx) for n ∈ Z, x ∈ X and f ∈ C (X ).

Our sequences (bn) ⊂ R will satisfy∑
n≤N f (Sbpnx)f (Sbqnx) = o(N) for any f ∈ C (X ),

∫
f = 0

and any uniquely ergodic flow S = (St)t∈R.
In particular,

∑
n≤N f (Sbnx)u(n) = o(N).3

Note that this will fail for a slowly increasing sequence
(an) ⊂ Z whenever

∑
n≤N u(n) 6= o(N).

2Kátai 1986, Bourgain-Sarnak-Ziegler 2011
3For automorphisms we consider an = [bn] and have analogous propertie for

each uniquely ergodic R.
5 / 29
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Möbius disjointness along random sequences

Our sequences also differ from an = n.

(−1)n+1 is multiplicative and at the same time this sequence
is uniquely ergodic. (−1)n+1 is not orthogonal to itself!

We do not expect Möbius disjointness (u = µ) along an = n
to hold for all uniquely ergodic automorphisms.4

This would imply that the Chowla conjecture fails:

If Chowla conjecture holds then in particular µ is generic for
an ergodic measure.
Any sequence generic for an ergodic measure can be
approximated by a sequence generic for a uniquely ergodic
dynamical system.5

Our sequences won’t be increasing. They will origin from random
constructions (and depend on an additional parameter).

4Downarowicz
5Weiss 2000
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Möbius disjointness along random sequences

Our sequences also differ from an = n.

(−1)n+1 is multiplicative and at the same time this sequence
is uniquely ergodic. (−1)n+1 is not orthogonal to itself!
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Möbius disjointness along random sequences

Why random sequences?

Recall that in the classical setting we study the convergence of

1
N

∑
n≤N f (Sny)µ(n).

We will have “random homeomorphisms” S = (Sx)x∈X on Y and
study

1
N

∑
n≤N f (S

(n)
x (y))µ(n) (∗).

Instead of Sn, we will deal with “random powers” (S
(n)
x ), i.e. there

will be a homeomorphism T : X → X and

S
(n)
x = ST n−1x ◦ · · · ◦ STx ◦ Sx .

Goal: find T and x 7→ Sx such that (∗) holds for “all uniquely
ergodic S”, all x , y and all f ∈ C (Y ).
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Basic notions: factors, extensions and joinings

Let T ∈ Aut(X ,B, µ), S ∈ Aut(Y , C, ν).

1 S is called a factor of T if S ◦ π = π ◦ T and π∗(µ) = ν for
some π : X → Y . We also say that T is an extension of S
and write T : B → C or T → S .

2 Measure λ on (X ×Y ,B⊗C) is called a joining of T and S if

(T × S)∗(λ) = λ,
λ|B⊗{∅,Y} = µ and λ|{∅,X}⊗C = ν.

Notation: J(T ,S), Je(T , S).

Both T and S are factors of each of their joinings.
Je(T ,S) is non-empty iff T and S are ergodic.
If µ⊗ ν is the only element of J(T ,S), we say that T and S
are disjoint.6

E.g. Id is disjoint from T , whenever T is ergodic.

6Note that this implies that at least one of them must be ergodic.
9 / 29
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Tools to prove Möbius disjointness and beyond

Let T ∈ Aut(X ,B, µ) be ergodic.

AOP (asymptotical orthogonality of powers)7 is one of the
most useful tools to prove Möbius disjointness for a particular
dynamical system. We say that T has AOP whenever

lim sup
p 6=q,p,q→∞

sup
κ∈Je(T p ,T q)

∣∣∣∣∫
X×X

f ⊗ g dκ

∣∣∣∣ = 0.

If T satisfies AOP, then Möbius disjointness holds in any
uniquely ergodic model of T .7

Recall that (S ,Y ) is a uniquely ergodic model of (X ,B, µ,T )
if (X ,B, µ,T ) ' (Y ,B(Y ), ν,S), where B(Y ) is the
sigma-algebra of Borel sets and ν is the unique S-invariant
measure.
Each ergodic T has a uniquely ergodic model.8

7Abdalaoui, Lemańczyk, de la Rue 2016
8Jewett-Krieger 1970
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Tools to prove Möbius disjointness and beyond

Let T ∈ Aut(X ,B, µ) be ergodic.

AOP (asymptotical orthogonality of powers)7 is one of the
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Tools to prove Möbius disjointness and beyond

Assume that T is a uniquely ergodic homeomorphism of X .

AOP implies strong MOMO (Möbius orthogonality of moving
orbits) [relative to u]:9

limK→∞
1

bK+1

∑
k≤K

∣∣∣∑bk≤n<bk+1
f (T nxk)u(n)

∣∣∣ = 0,

for each multiplicative u, |u| ≤ 1, each (bk) ⊂ N with
bk+1 − bk →∞ and each choice of xk ∈ X , k ≥ 1, and
f ∈ C (X ),

∫
f dµ = 0.

In particular,10 we have so called or orthogonality to u on a
typical short interval:

1
M

∑
M≤m<2M

∣∣∣ 1H ∑m≤h<m+H f (T hx)u(h)
∣∣∣→ 0

when H →∞, H/M → 0.
9Abdalaoui, KP, Lemańczyk, de la Rue 2016

10Abdalaoui, Lemańczyk, de la Rue 2016
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Tools to prove Möbius disjointness and beyond

Assume that T is a uniquely ergodic homeomorphism of X .
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Basic notions: more about extensions

1 Compact group extensions:
G – compact group, ϕ : X → G – measurable

Tϕ(x , g) = (Tx , ϕ(x)g)

(the same formula for lscs groups)

2 Isometric extensions:
all “intermediate” extensions of cpt. group extensions, i.e.
T : B → A is isometric if we have C ⊃ B ⊃ A and T : C → A
is compact group extension.

3 Distal extensions:
T : B → A is distal if it can be represented as a transfinite
sequence of isometric extensions (+ passage to inverse limits)
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Basic notions: more about extensions

4 Relatively weakly mixing extensions: T : B → A is relatively
weakly mixing if the relatively independent joining over A

µ⊗A µ(A×B) =

∫
X/A

E (1A|A) ·E (1B |A) dµ|A for A,B ∈ B

is ergodic for T × T .

E.g.: S × T → S is relatively WM ⇐⇒ T is WM

Relatively weakly mixing extensions are relatively disjoint from
relatively distal extensions.

Let A be a factor of T ∈ Aut(X ,B, µ). There exists an
“intermediate” factor C such that:

T : B → C is rel. weakly-mixing
T : C → A is distal

and this decomposition is unique.11

11Furstenberg - Zimmer 1976-77
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Basic notions: extensions vs. Möbius disjointness

While there were some results concerning lifting Möbius
disjointness to distal extensions of rotations:

Green, Tao 2012: affine unipotent diffeomorphisms on G/Γ;

Liu, Sarnak 2015: analytic Anzai skew products (+ an extra
assumption) over rotations, all zero entropy affine systems;

Wang 2015: analytic skew products over rotations;

KP, Lemańczyk 2015: C 1+δ-extensions of a typical rotation;

Little was known in case of relatively weakly mixing extensions.
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Basic notions: Rokhlin extensions

Assume that:

T ∈ Aut(X ,B, µ) is ergodic,

ϕ : X → G is a cocycle with values in a lcsc Abelian group,

G 3 g 7→ Sg ∈ Aut(Y , C, ν) is a (measurable)
G -representation (denoted by S) that is ergodic.

Then

Tϕ,S(x , y) = (Tx , Sϕ(x)(y)) for (x , y) ∈ X × Y

is called a Rokhlin extension of T .
In particular, we can take G = R and S=a flow.

E.g. if ϕ = const = g then Tϕ,S(x , y) = (Tx ,Sgy), i.e. we
obtain the direct product T × Sg .

15 / 29
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Basic notions: Rokhlin extensions

Tϕ,S(x , y) = (Tx , Sϕ(x)(y)) for (x , y) ∈ X × Y

Properties of Tϕ,S :12

Tϕ,S is ergodic ⇐⇒ T is ergodic and σS(Λϕ) = 0.
In particular, if ϕ and S are ergodic then Tϕ,S is ergodic.

If T is uniquely ergodic, ϕ is ergodic and S is uniquely
ergodic then Tϕ,S is uniquely ergodic.

If ϕ is ergodic and S is weakly mixing then Tϕ,S → T is
relatively weakly mixing.

12Lemańczyk, Lesigne 2003
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Basic notions: cocycles

Let T ∈ Aut(X ,B, µ), let ϕ : X → G be measurable, with values
in a lcsc Abelian group. Consider the group extension:

Tϕ(x , g) = (Tx , ϕ(x) + g) for x ∈ X , g ∈ G .

Note that (Tϕ)k(x , g) = (T kx , ϕ(k)(x) + g), where

ϕ(k)(x) =


ϕ(x) + ϕ(Tx) + . . .+ ϕ(T k−1x) if k ≥ 1,

0 if k = 0,
−(ϕ(T kx) + . . .+ ϕ(T−1x)) if k < 0.
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Basic notions: Mackey action

Tϕ(x , g) = (Tx , ϕ(x) + g) for x ∈ X , g ∈ G .

Let τ = (τg )g∈G be the natural G -action on (X × G , µ⊗ λG ):

τg (x , g ′) = (x , g + g ′) for (x , g ′) ∈ X × G .

Then τ preserves µ⊗ λG . Let λ ' λG be a probability measure.
τ with respect to µ⊗ λ is non-singular.
Notice that Tϕ ◦ τg = τg ◦ Tϕ for g ∈ G .
Thus, τ acts on the σ-algebra of Tϕ-invariant sets.
Notation: W(ϕ), W(ϕ,T , µ).
It is a non-singular ergodic action (with respect to λ ' λG ).
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Basic notions: Rokhlin extensions and entropy

Suppose that ϕ is recurrent (i.e. ϕ(n)(x) visits each
neighborhood of 0 ∈ G infinitely often for a.e. x).
Then h(Tϕ,S) = h(T ) for each S.13

If ϕ is ergodic then it is recurrent.

In particular, if h(T ) = 0 and ϕ is ergodic, h(Tϕ,S) = 0 for
each S.

13Danilenko 2001
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AOP for Rokhlin extensions

Theorem (KP, Lemańczyk)

Assume that T has the AOP property and for each r 6= s, r , s ∈ P
and arbitrary η ∈ Je(T r ,T s):

the group extension (Tϕ)r × T s is ergodic over (T r × T s , η);

the Mackey action W((ϕ(r) × ϕ(s),T r × T s , η) is weakly
mixing.

Let S = (Sg )g∈G be an ergodic G-action on (Y , C, ν).
Then Tϕ,S has the AOP property.

((Tϕ)r × T s)(x , t, y) = (T rx , ϕ(r)(x) + t,T sy) =
(T r × T s)ϕ(r)(x , y , t)

A G -action W is weakly mixing ⇐⇒ the only L∞ eigenvalue
of W is the trivial character.

χ ∈ Ĝ is an L∞-eigenvalue if for some 0 6= f ∈ L∞, we have
f ◦Wg = χ(g) · f for all g ∈ G .
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Ergodic sequences

Recall that (an) ⊂ G is called ergodic if for each ergodic
S = (Sg )g∈G ⊂ Aut(Y , C, ν), we have

1
N

∑
n≤N f ◦ Sbn →

∫
f dν in L2

for each f ∈ L2(Y , C, ν).

Let T be uniquely ergodic, let ϕ : X → G be continuous and
let W(ϕ) be weakly mixing.
Then (ϕ(n)(x)) is ergodic for each x ∈ X . In particular, the
assertion holds if ϕ is ergodic.14

In our setting (Tϕ)r × (Tϕ)s is ergodic ⇒ (Tϕ)r is ergodic ⇒ Tϕ
is ergodic ⇒ (ϕ(n)(x)) is ergodic.

([nc ]), c ∈ (0, 1), is also ergodic.15

14Lemańczyk, Lesigne, Parreau, Volný, Wierdl 2002
15Bergelson, Boshernitzan, Bourgain 1994
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AOP for relatively weakly mixing extensions of Tx = x + α

Suppose now that T is a totally ergodic rotation.

Then T has the AOP property.16

WLOG: X is a compact monothetic group, Tx = x + α,
where {nα : n ∈ Z} is dense in X .

We describe now Je(T r ,T s). Let a, b ∈ Z so that ar + bs = 1.
Fix u ∈ X and consider Au := {(x , y + u) ∈ X × X : sx = ry}.

Figure: A0 for s = 3, r = 2

Au Au

X X

Vu

T r × T s

T

Vu

Vu is given by Vu(x , y + u) = ax + by . Since T is uniquely
ergodic, each ergodic joining of T r and T s is supported on one of
the sets Au.

16Abdalaoui, Lemańczyk, de la Rue 2016
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AOP for relatively weakly mixing extensions of Tx = x + α

Theorem (KP, Lemańczyk)

Assume that T has the AOP property.
Assume for each r 6= s, r , s ∈ P and arbitrary η ∈ Je(T r ,T s):

(Tϕ)r × T s is ergodic over (T r × T s , η);
W((ϕ(r) × ϕ(s),T r × T s , η) is weakly mixing.

Let S = (Sg )g∈G be an ergodic G-action on (Y , C, ν).
Then Tϕ,S has the AOP property.

We need to describe (T r × T s)ϕ(r)×ϕ(s) over (T r × T s , η).

Au × G × G are pairwise disjoint, closed, invariant under
(T r × T s)ϕ(r)×ϕ(s) and their union is X × X × G × G .

(T r × T s)ϕ(r)×ϕ(s) |Au×G×G ' Tϕ(r)(r ·)×ϕ(s)(s·+u) (topological
isom. via Ju(x , y + u, g , h) = (ax + by , g , h))

(T r × T s , η)ϕ(r) |Au×G ' Tϕ(r)(r ·) via Ju.
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Assume that T has the AOP property .

Assume for each r 6= s, r , s ∈ P and arbitrary η ∈ Je(T r ,T s):

(Tϕ)r × T s is ergodic over (T r × T s , η);
W((ϕ(r) × ϕ(s),T r × T s , η) is weakly mixing.

Let S = (Sg )g∈G be an ergodic G-action on (Y , C, ν).
Then Tϕ,S has the AOP property.

We need to describe (T r × T s)ϕ(r)×ϕ(s) over (T r × T s , η).

Au × G × G are pairwise disjoint, closed, invariant under
(T r × T s)ϕ(r)×ϕ(s) and their union is X × X × G × G .

(T r × T s)ϕ(r)×ϕ(s) |Au×G×G ' Tϕ(r)(r ·)×ϕ(s)(s·+u) (topological
isom. via Ju(x , y + u, g , h) = (ax + by , g , h))

(T r × T s , η)ϕ(r) |Au×G ' Tϕ(r)(r ·) via Ju.

24 / 29



AOP for relatively weakly mixing extensions of Tx = x + α

Theorem (KP, Lemańczyk)
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Let T be a totally ergodic rotation on X .

Assume for each r 6= s, r , s ∈ P and arbitrary η ∈ Je(T r ,T s) :

(Tϕ)r × T s is ergodic over (T r × T s , η);
W((ϕ(r) × ϕ(s),T r × T s , η) is weakly mixing.

Let S = (Sg )g∈G be an ergodic G-action on (Y , C, ν).
Then Tϕ,S has the AOP property.

We need to describe (T r × T s)ϕ(r)×ϕ(s) over (T r × T s , η).

Au × G × G are pairwise disjoint, closed, invariant under
(T r × T s)ϕ(r)×ϕ(s) and their union is X × X × G × G .

(T r × T s)ϕ(r)×ϕ(s) |Au×G×G ' Tϕ(r)(r ·)×ϕ(s)(s·+u) (topological
isom. via Ju(x , y + u, g , h) = (ax + by , g , h))

(T r × T s , η)ϕ(r) |Au×G ' Tϕ(r)(r ·) via Ju.

24 / 29



AOP for relatively weakly mixing extensions of Tx = x + α

Theorem (KP, Lemańczyk)
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Assume that f ∈ C 1+δ(T), δ > 0,
∫
T f dλT = 0, not a

trigonometric polynomial. Then, for a generic α, for Tx = x + α:

f (r)(r ·) is ergodic for each r ∈ P;
W(f (r)(r ·)× f (s)(s ·+u)) is weakly mixing for r < s in P.

In particular, for each ergodic flow S = (St)t∈R ⊂ Aut(Y , C, ν),
Tϕ,S has the AOP property.
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Rokhlin extensions with AOP – consequences

Suppose that T is uniquely ergodic ϕ : X → R is continuous and
ergodic, S = (St)t∈R is uniquely ergodic and we have AOP for
Tϕ,S . Take F (x , y) = f (y). Then, by strong MOMO,

0 = lim
K→∞

1

bK+1

∑
k≤K

∣∣∣∣∣∣
∑

bk≤n<bk+1

F ((Tϕ,S)n(x , yk))u(n)

∣∣∣∣∣∣
= lim

K→∞

1

bK+1

∑
k≤K

∣∣∣∣∣∣
∑

bk≤n<bk+1

f (Sϕ(n)(x)(yk))u(n)

∣∣∣∣∣∣
= lim

K→∞

1

bK+1

∑
k≤K

∣∣∣∣∣∣
∑

bk≤n<bk+1

f (San(yk))u(n)

∣∣∣∣∣∣ ,
where an = ϕ(n)(x) (this sequence does not depend on S).

If for proving AOP we use the results from the previous part
of the talk, we can take ANY uniquely ergodic S.
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Rokhlin extensions with AOP – consequences

Suppose that T is uniquely ergodic ϕ : X → R is continuous and
ergodic, R is uniquely ergodic and we have AOP for T

ϕ,R̃
, where R̃

is the suspension flow over R. Then

lim
K→∞

1

bK+1

∑
k≤K

∣∣∣∣∣∣
∑

bk≤n<bk+1

f (R [an](zk))u(n)

∣∣∣∣∣∣ = 0,

where an = ϕ(n)(x).

If for proving AOP we use the results from the previous part
of the talk, we can take ANY uniquely ergodic R.
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Rokhlin extensions with AOP – consequences

E.g. for R on Z/2Z given by Ri = i + 1 we get

lim
K→∞

1

bK+1

∑
k≤K

∣∣∣∣∣∣
∑

bk≤n<bk+1

(−1)[an]u(n)

∣∣∣∣∣∣ = 0.

Equivalently, as H →∞, H/M → 0,

1

M

∑
M≤m<2M

∣∣∣∣∣∣ 1

H

∑
m≤h<m+H

(−1)[ah]u(h)

∣∣∣∣∣∣→ 0 (∗)

Notice that the above holds without any assumptions on the
convergence of 1

N

∑
n≤N u(n).

If u satisfies a certain condition stronger than aperiodicity17 then
(∗) holds for the constant sequence (an).18

17∑
n≤N u(an + b) = o(N)

18Matomäki, Radziwi l l, Tao 2016
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Rokhlin extensions with AOP – consequences

This theory can be applied to the affine cocycle ϕ(x) = x − 1/2
over Tx = x + α.

To make ϕ continuous, we use the coordinates given by the
corresponding Sturmian model.

If α is irrational with bounded partial quotients and α, β, 1 are
rationally independent then we can take

an =

nβ +
n(n − 1)

2
α− n

2
−

n−1∑
j=1

[β + jα]

 , n ≥ 1.
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Thank you!
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