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Introduction



Mobius disjointness

(=1)%, ifn=p1-... px,
® p(n) = Mobius function = ¢ 1, if n=1,
0, otherwise.

m Sarnak’s conjecture (2011):

2oy F(T™X)p(n) = o(N) | (S)

whenever T: X — X is a zero entropy homeomorphism of a
compact metric space, f € C(X), x € X.
If the above holds, we speak of the Mobius disjointness of T .
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whenever T: X — X is a zero entropy homeomorphism of a
compact metric space, f € C(X), x € X.
If the above holds, we speak of the Mobius disjointness of T .

Instead of u one can also consider a multiplicative function u with
|u| <1 and study an analogous condition (and speak about
u-disjointness).
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We will find sequences (a,) C Z such that

2nen F(R*Z)u(n) = o(N) | (*)

for each uniquely ergodic R: Z — Z, f € C(Z) with [ f =0,
z € Z and each mutliplicative u: N — C, |u| < 1.

m Looking at sequences (a,) allows us to look at the actions of
lcsc groups, not only G = Z, e.g. at flows.

m In fact, we will produce “"good” (a,) C Z satisfying (x) by
producing “good” (b,) C R, taking a2, := [b,] and using
suspension flows.

m The existence of (a,) C Z for which (x) holds for u = p is
not surprising: for any u with > _, u(n) = o(N), it suffices
to assume that (a,) is increasing sufficiently slowly.

E.g. for u = p, we can take ([n°]) with 0 < ¢ < 1.1

IN. Frantzikinakis, private communication
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Let F: N — C be bdd. Suppose that > _ F(rn)F(sn) = o(/N)
for any sufficiently large primes r # s. Then

2 ey F(n)u(n) = o(N)

for any multiplicative function u with |u| < 1.2

F(n)=1f(T"x)forneZ,x € X and f € C(X).
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Mobius disjointness along random sequences

Our sequences differ from the slowly increasing sequences.

Let F: N — C be bdd. Suppose that
for any sufficiently large primes r # s. Then

for any multiplicative function u with |u| < 1.2

forne Z,x € X and f € C(X).

m Our sequences (b,) C R will satisfy
forany f € C(X), [f=0
and any uniquely ergodic flow S = (St)teR.
In particular,
m Note that this will fail for a slowly increasing sequence
(an) C Z whenever > u(n) # o(N).

2K4tai 1986, Bourgain-Sarnak-Ziegler 2011
3For automorphisms we consider a, = [bn] and have analogous propertie for
each uniquely ergodic R.
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Mobius disjointness along random sequences

Our sequences also differ from a, = n.
= (—1)"* is multiplicative and at the same time this sequence
is uniquely ergodic. (=1)™1 is not orthogonal to itself!

m We do not expect Mobius disjointness (u = p) along a, = n
to hold for all uniquely ergodic automorphisms.*
This would imply that the Chowla conjecture fails:

m If Chowla conjecture holds then in particular p is generic for
an ergodic measure.

m Any sequence generic for an ergodic measure can be
approximated by a sequence generic for a uniquely ergodic
dynamical system.®

Our sequences won't be increasing. They will origin from random
constructions (and depend on an additional parameter).

*Downarowicz
SWeiss 2000
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Mobius disjointness along random sequences

Why random sequences?

Recall that in the classical setting we study the convergence of

70 nen F(S"y)u(n).

We will have “random homeomorphisms” S = (Sx)xex on Y and
study

A Snen S m(n)  (x).

Instead of S”, we will deal with “random powers” (S)En)), i.e. there
will be a homeomorphism T: X — X and

S — Spuayoee 0 Spy oS,

Goal: find T and x — Sy such that (%) holds for “all uniquely
ergodic ", all x,y and all f € C(Y).
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Let T € Aut(X,B,u), S € Aut(Y,C,v).
Sis called a factorof Tif Somr =7mo T and m.(u) = v for
some m: X — Y. We also say that T is an extension of §
and write T: B—>Cor T — S.
Measure A on (X x Y,B®C) is called a joining of T and S if
B (T xS).(\)=A\
| | )\|B®{@’y} = U and /\|{®,X}®C = V.

Notation: J(T,S), J¢(T,S).

m Both T and S are factors of each of their joinings.

m J°(T,S) is non-empty iff T and S are ergodic.

m If 4 ® v is the only element of J(T,S), we say that T and S
are disjoint.®
E.g. Id is disjoint from T, whenever T is ergodic.

®Note that this implies that at least one of them must be ergodic.



Tools to prove Mobius disjointness and beyond

Let T € Aut(X, B, 1) be ergodic.
m AOP (asymptotical orthogonality of powers)? is one of the

most useful tools to prove Mobius disjointness for a particular
dynamical system. We say that T has AOP whenever

/ f®gdk| =0.
JXxX

lim sup sup
pP#q,p,q—00 KEJE(TP,TA)

"Abdalaoui, Lemanczyk, de la Rue 2016
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m AOP (asymptotical orthogonality of powers)? is one of the
most useful tools to prove Mobius disjointness for a particular
dynamical system. We say that T has AOP whenever

/ f®gdk
JXxX

m If T satisfies AOP, then Mobius disjointness holds in any
uniquely ergodic model of T.7

lim sup sup =0.

pP#q,p,q—00 kEJE(TP,TY)

m Recall that (S, Y) is a uniquely ergodic model of (X, B, u, T)
if (X.Bpu, T) = (Y.B(Y)..S), where B(Y) is the
sigma-algebra of Borel sets and v is the unique S-invariant
measure.

m Each ergodic T has a uniquely ergodic model.®

"Abdalaoui, Lemanczyk, de la Rue 2016

8 Jewett-Krieger 1970
10/29



Tools to prove Mobius disjointness and beyond
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Assume that T is a uniquely ergodic homeomorphism of X.
m AOP implies strong MOMO (M&bius orthogonality of moving
orbits) [relative to u]:°

; 1
||mK_>OO bK+1 ZkSK ‘ Zbkgn<bk+1 f(TnXk)u(n) — 0,

for each multiplicative u, |u| <1, each (bx) C N with
bx11 — bx — oo and each choice of xx € X, kK > 1, and
feC(X), [fdu=0.

= In particular,!® we have so called or orthogonality to 1 on a
typical short interval:

ﬁ ZM§m<2M ‘% Zm§h<m+H f(T"x)u(h)| — 0

when H — o0, H/M — 0.
°Abdalaoui, KP, Lemariczyk, de la Rue 2016
1 Abdalaoui, Lemariczyk, de la Rue 2016
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Compact group extensions:
G — compact group, p: X — G — measurable

To(x,8) = (Tx, o(x)g)
(the same formula for Iscs groups)

Isometric extensions:
all “intermediate” extensions of cpt. group extensions, i.e.
T: B — Ais isometricif we have CO B> Aand T:C— A
is compact group extension.

Distal extensions:
T: B — Ais distal if it can be represented as a transfinite
sequence of isometric extensions (+ passage to inverse limits)

12/29
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Basic notions: more about extensions

Relatively weakly mixing extensions: T: B — A is relatively
weakly mixing if the relatively independent joining over A

p@Ap(Ax B) = / E(1aA)- E(15|A) dyul4 for A, B € B
X/ A

is ergodic for T x T.

mEg:SXxT— Sisrelatively WM <— T is WM

m Relatively weakly mixing extensions are relatively disjoint from
relatively distal extensions.

m Let A be a factor of T € Aut(X, B, i). There exists an
“intermediate” factor C such that:

m T: B — Cis rel. weakly-mixing
m T:C— Ais distal

and this decomposition is unique.!!

UEyrstenberg - Zimmer 1976-77
13/29
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While there were some results concerning lifting Mobius
disjointness to distal extensions of rotations:

m Green, Tao 2012: affine unipotent diffeomorphisms on G/T;

m Liu, Sarnak 2015: analytic Anzai skew products (4 an extra
assumption) over rotations, all zero entropy affine systems;

m Wang 2015: analytic skew products over rotations;
m KP, Lemariczyk 2015: Ct9_extensions of a typical rotation;

Little was known in case of relatively weakly mixing extensions.
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m ¢: X — G is a cocycle with values in a lcsc Abelian group,

m G>g— S; € Aut(Y,C,v) is a (measurable)
G-representation (denoted by S) that is ergodic.
Then

Toslay) = (Tx. 5 (y)) for (x,y) € X x Y

is called a Rokhlin extension of T.
In particular, we can take G = R and S=a flow.

m E.g if ¢ = const = g then T, s(x,y) = (Tx,Sgy), i.e. we
obtain the direct product T x Sg.

15/29
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Basic notions: Rokhlin extensions

Tosbay) = (Tx 5 o(y)) for (x,y) € X x Y

Properties of T%S:12
m T,sis ergodic <= T is ergodic and o5(A,) = 0.
In particular, if ¢ and S are ergodic then 7 5 is ergodic.
m If T is uniquely ergodic, ¢ is ergodic and S is uniquely
ergodic then 7 s is uniquely ergodic.
m If ¢ is ergodic and & is weakly mixing then 7.5 — T is
relatively weakly mixing.

12| emariczyk, Lesigne 2003
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Basic notions: cocycles

Let T € Aut(X,B,u), let ¢: X — G be measurable, with values
in a lcsc Abelian group. Consider the group extension:

‘T;(X.g):(TX.;(X)+g) forxe X,g € G.\
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Basic notions: cocycles

Let T € Aut(X,B,u), let ¢: X — G be measurable, with values
in a lcsc Abelian group. Consider the group extension:

‘T;(x.g):(Tx.;(x)+g) forxe X,g € G.\

Note that (Tw)k(x,g) = (Tkx, gp(k)(x) + g), where
o(x) +o(Tx) + ...+ o(TFIx) if k>1,

oK) (x) = 0 if k=0,
—(p(Tkx)+ ...+ (T 1x)) if k<O.

17/29



Basic notions: Mackey action

To(x.g)=(Tx. po(x)+g) forxe X,geG.

Let 7 = (74)gecc be the natural G-action on (X X G, ® Ag):

Tg(x.8") = (x,g + &) for (x,g') € X x G.
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Let 7 = (74)gecc be the natural G-action on (X X G, ® Ag):
Te(x,8") = (x,g +g') for (x,g') € X x G.

Then 7 preserves 1t @ Ag. Let A >~ Ag be a probability measure.
T with respect to ;4 ® X is non-singular.

Notice that 7. o7, — 7,0 7 for g€ G.

Thus, 7 acts on the o-algebra of T,-invariant sets.

Notation: W(p), Wy, T.10).

It is a non-singular ergodic action (with respect to A\ ~ \g).
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Basic notions: Rokhlin extensions and entropy

= Suppose that ¢ is recurrent (i.e. (" (x) visits each
neighborhood of 0 € G infinitely often for a.e. x).
Then h(T,s) = h(T) for each 5.13

3Danilenko 2001
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Basic notions: Rokhlin extensions and entropy

= Suppose that ¢ is recurrent (i.e. (" (x) visits each
neighborhood of 0 € G infinitely often for a.e. x).
Then h(T,s) = h(T) for each 5.13

m If ¢ is ergodic then it is recurrent.

m In particular, if h(T) =0 and ¢ is ergodic, h(T, s) = 0 for
each §.

3Danilenko 2001
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AOP for Rokhlin extensions

Theorem (KP, Lemanczyk)

Assume that T has the AOP property and for each r # s, r,s € P
and arbitrary n € J¢(T", T*):
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AOP for Rokhlin extensions

Theorem (KP, Lemanczyk)

Assume that T has the AOP property and for each r # s, r,s € P
and arbitrary n € J¢(T", T*):
m the group extension (T,)" x T is ergodic over (T" x T*,n);
m the Mackey action W((¢(") x @(8), T x T*%,n) is weakly
mixing.
Let S = (Sg)gcc be an ergodic G-action on (Y,C,v).
Then T, s has the AOP property.

n ((To) x T9)(x, t.y) = (Tx, ) (x) + £, T*y) =
(Tr X Ts)gp(f)(xvy’ t)

m A G-action W is weakly mixing <= the only L™ eigenvalue
of W is the trivial character.

myE G is an L>-eigenvalue if for some 0 # f € L*, we have
foWg=x(g) fforall gegG.
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Ergodic sequences

Recall that (a,) C G is called ergodic if for each ergodic
S = (S¢)gec C Aut(Y,C,v), we have

LS enfoSy — [fdvin 2

for each f € L2(Y,C,v).
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Ergodic sequences

Recall that (a,) C G is called ergodic if for each ergodic
S = (S¢)gec C Aut(Y,C,v), we have

LS enfoSy — [fdvin 2

for each f € L2(Y,C,v).

m Let T be uniquely ergodic, let ¢: X — G be continuous and
let W(p) be weakly mixing.
Then (»7)(x)) is ergodic for each x € X. In particular, the
assertion holds if ¢ is ergodic.14
In our setting (T,,)" x (T,)® is ergodic = (T,)" is ergodic = T,
is ergodic = (o) (x)) is ergodic.

m ([n°]), c € (0,1), is also ergodic.!®

14Lemar’1czyk, Lesigne, Parreau, Volny, Wierdl 2002

15Bergelson, Boshernitzan, Bourgain 1994
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Suppose now that T is a totally ergodic rotation.
m Then T has the AOP property.'®
m WLOG: X is a compact monothetic group, Tx = x + «,
where {na: n € Z} is dense in X.

We describe now J°( 7", 7°). Let a,b € Z so that ar + bs = 1.
Fix u € X and consider A, = {(x.y + u) & X x X s5x = ry}.
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Suppose now that T is a totally ergodic rotation.
m Then T has the AOP property.'®
m WLOG: X is a compact monothetic group, Tx = x + «,
where {na: n € Z} is dense in X.

We describe now J°( 7", 7°). Let a,b € Z so that ar + bs = 1.
Fix u € X and consider A, = {(x.y + u) & X x X s5x = ry}.

Tr TS
A

Figure: Ag fors =3, r=2 X
V,, is given by V,(x.y + u) = ax + by.

1 Abdalaoui, Lemariczyk, de la Rue 2016
23/29



AOP for relatively weakly mixing extensions of Tx = x + «

Suppose now that T is a totally ergodic rotation.

m Then T has the AOP property.'®
m WLOG: X is a compact monothetic group, Tx = x + «,
where {na: n € Z} is dense in X.

We describe now J°( 7", 7°). Let a,b € Z so that ar + bs = 1.
Fix u € X and consider A, :— {(x.y + u) & X x X 1 s5x = ry}.

T x T*
Ay Ay
V., l V,
T
Figure: Ag fors =3, r=2 X X

V, is given by V,(x.y ++ u) = ax + by. Since T is uniquely
ergodic, each ergodic joining of T" and T7 is supported on one of
the sets A,.

1 Abdalaoui, Lemariczyk, de la Rue 2016
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AOP for relatively weakly mixing extensions of Tx = x + «

Theorem (KP, Lemariczyk)

Assume that T has the AOP property.
Assume for each r #'s, r,s € P and arbitraryn € JE(T", T*):

m (Ty,)" x T is ergodic over (T" x T%,n);
m W((o") x o) T" x T5 n) is weakly mixing.

Let S = (Sg)gcc be an ergodic G-action on (Y,C,v).
Then T, s has the AOP property.
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Let T be a totally ergodic rotation on X.
Assume for each r # s, r,s € P:
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- W(Qp(f)(r -) X go(s)(s - 4u)) is weakly mixing for any u.

Let S = (Sg)gcc be an ergodic G-action on (Y,C,v).
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AOP for relatively weakly mixing extensions of Tx = x + «

Theorem (KP, Lemanczyk)

Let T be a totally ergodic rotation on X.
Assume for each r # s, r,s € P:
m ©((r-) is ergodic for each r € P;
= W(p()(r-) x o) (s - 4u)) is weakly mixing for any u.

Let S = (Sg)gcc be an ergodic G-action on (Y,C,v).
Then T, s has the AOP property.

Theorem (KP, Lemanczyk)

Assume that f € C**9(T), § > 0, [;fdAr =0, not a
trigonometric polynomial. Then, for a generic o, for Tx = x + a:

u f()(r.) is ergodic for each r € P;

s W(F)(r) x fO)(s - +u)) is weakly mixing for r < s in P.
In particular, for each ergodic flow S = (S¢)ter C Aut(Y,C,v),
T,.s has the AOP property.
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Rokhlin extensions with AOP — consequences

Suppose that T is uniquely ergodic ¢: X — R is continuous and
ergodic, S = (St)ter is uniquely ergodic and we have AOP for
Tos. Take F(x.y) = f(y).
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0= lim DI DY F((Tes) (< y))u(n)
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where a, = o(")(x) (this sequence does not depend on &).
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Suppose that T is uniquely ergodic ¢: X — R is continuous and
ergodic, S = (St)ter is uniquely ergodic and we have AOP for
T,s. Take F(x.y) = f(y). Then, by strong MOMO,
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where a, = ¢(")(x) (this sequence does not depend on ).

m If for proving AOP we use the results from the previous part
of the talk, we can take ANY uniquely ergodic S.
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E.g. for R on Z/2Z given by Ri = i + 1 we get

S > (=ntlun)| =o.

k<K |b<n<byi1

Equivalently, as H — oo, H/M — 0,

oY Pl w0 ()

M<m<2M m<h<m+H

Notice that the above holds without any assumptions on the
convergence of 3 >, u(n).

If u satisfies a certain condition stronger than aperiodicity!” then
(%) holds for the constant sequence (a,).*

7Y < u(an + b) = o(N)
8Matomaiki, Radziwitt, Tao 2016
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This theory can be applied to the affine cocycle p(x) = x —1/2
over [x = x4+ a.
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Rokhlin extensions with AOP — consequences

This theory can be applied to the affine cocycle p(x) = x —1/2
over [x = x4+ a.

m To make ¢ continuous, we use the coordinates given by the
corresponding Sturmian model.

If «v is irrational with bounded partial quotients and «, 3,1 are
rationally independent then we can take

n—1

n(n—1 n . -‘
a, = LHKJF(Z)”ZZ;[JjLJ“]J ,n>1
j=
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Thank you!
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