Möbius disjointness along ergodic sequences for uniquely ergodic actions

Joanna Kułaga-Przymus

Nicolaus Copernicus University

Luminy, 08/12/2016

(joint work with M. Lemańczyk)

1 Introduction

2 Basic notions

3 Results

Möbius disjointness

•
$$\mu(n) = \text{M\"obius function} = \begin{cases} (-1)^k, & \text{if } n = p_1 \cdot \ldots \cdot p_k, \\ 1, & \text{if } n = 1, \\ 0, & \text{otherwise.} \end{cases}$$

Sarnak's conjecture (2011):

$$\sum_{n\leq N} f(T^n x) \mu(n) = o(N)$$
 (S)

whenever $T: X \to X$ is a zero entropy homeomorphism of a compact metric space, $f \in C(X)$, $x \in X$. If the above holds, we speak of the Möbius disjointness of T.

Instead of μ one can also consider a multiplicative function u with $|u| \leq 1$ and study an analogous condition (and speak about u-disjointness).

Möbius disjointness

•
$$\mu(n) = \text{M\"obius function} = \begin{cases} (-1)^k, & \text{if } n = p_1 \cdot \ldots \cdot p_k, \\ 1, & \text{if } n = 1, \\ 0, & \text{otherwise.} \end{cases}$$

Sarnak's conjecture (2011):

$$\sum_{n\leq N} f(T^n x) \mu(n) = o(N)$$
 (S)

whenever $T: X \to X$ is a zero entropy homeomorphism of a compact metric space, $f \in C(X)$, $x \in X$.

If the above holds, we speak of the Möbius disjointness of T.

Instead of μ one can also consider a multiplicative function u with $|u| \leq 1$ and study an analogous condition (and speak about u-disjointness).

We will be interested in the following variation of (S):

$$\sum_{n\leq N} f(R^{a_n}z)\boldsymbol{u}(n) = o(N) \quad (*)$$

- Looking at sequences (a_n) allows us to look at the actions of lcsc groups, not only G = Z, e.g. at flows.
- In fact, we will produce "good" (a_n) ⊂ Z satisfying (*) by producing "good" (b_n) ⊂ R, taking a_n := [b_n] and using suspension flows.
- The existence of (a_n) ⊂ Z for which (*) holds for u = µ is not surprising: for any u with ∑_{n≤N} u(n) = o(N), it suffices to assume that (a_n) is increasing sufficiently slowly.
 E.g. for u = µ, we can take ([n^c]) with 0 < c < 1.¹

¹N. Frantzikinakis, private communication

We will find sequences $(a_n) \subset \mathbb{Z}$ such that

$$\sum_{n \leq N} f(R^{a_n} z) \boldsymbol{u}(n) = o(N) \quad (*)$$

- Looking at sequences (a_n) allows us to look at the actions of lcsc groups, not only G = Z, e.g. at flows.
- In fact, we will produce "good" (a_n) ⊂ Z satisfying (*) by producing "good" (b_n) ⊂ R, taking a_n := [b_n] and using suspension flows.
- The existence of $(a_n) \subset \mathbb{Z}$ for which (*) holds for $\boldsymbol{u} = \boldsymbol{\mu}$ is not surprising: for any \boldsymbol{u} with $\sum_{n \leq N} \boldsymbol{u}(n) = o(N)$, it suffices to assume that (a_n) is increasing sufficiently slowly. E.g. for $\boldsymbol{u} = \boldsymbol{\mu}$, we can take $([n^c])$ with 0 < c < 1.¹

¹N. Frantzikinakis, private communication

We will find sequences $(a_n) \subset \mathbb{Z}$ such that

$$\sum_{n \leq N} f(R^{a_n} z) \boldsymbol{u}(n) = o(N) \quad (*)$$

- Looking at sequences (a_n) allows us to look at the actions of lcsc groups, not only G = Z, e.g. at flows.
- In fact, we will produce "good" (a_n) ⊂ Z satisfying (*) by producing "good" (b_n) ⊂ R, taking a_n := [b_n] and using suspension flows.
- The existence of $(a_n) \subset \mathbb{Z}$ for which (*) holds for $\boldsymbol{u} = \boldsymbol{\mu}$ is not surprising: for any \boldsymbol{u} with $\sum_{n \leq N} \boldsymbol{u}(n) = o(N)$, it suffices to assume that (a_n) is increasing sufficiently slowly. E.g. for $\boldsymbol{u} = \boldsymbol{\mu}$, we can take $([n^c])$ with 0 < c < 1.¹

¹N. Frantzikinakis, private communication

We will find sequences $(a_n) \subset \mathbb{Z}$ such that

$$\sum_{n \leq N} f(R^{a_n} z) \boldsymbol{u}(n) = o(N) \quad (*)$$

- Looking at sequences (a_n) allows us to look at the actions of lcsc groups, not only G = Z, e.g. at flows.
- In fact, we will produce "good" (a_n) ⊂ Z satisfying (*) by producing "good" (b_n) ⊂ R, taking a_n := [b_n] and using suspension flows.
- The existence of (a_n) ⊂ Z for which (*) holds for u = µ is not surprising: for any u with ∑_{n≤N} u(n) = o(N), it suffices to assume that (a_n) is increasing sufficiently slowly.
 E.g. for u = µ, we can take ([n^c]) with 0 < c < 1.¹

¹N. Frantzikinakis, private communication

We will find sequences $(a_n) \subset \mathbb{Z}$ such that

$$\sum_{n \leq N} f(R^{a_n} z) \boldsymbol{u}(n) = o(N) \quad (*)$$

for each uniquely ergodic $R: Z \to Z$, $f \in C(Z)$ with $\int f = 0$, $z \in Z$ and each mutliplicative $\boldsymbol{u}: \mathbb{N} \to \mathbb{C}$, $|\boldsymbol{u}| \leq 1$.

- Looking at sequences (a_n) allows us to look at the actions of lcsc groups, not only G = Z, e.g. at flows.
- In fact, we will produce "good" (a_n) ⊂ Z satisfying (*) by producing "good" (b_n) ⊂ R, taking a_n := [b_n] and using suspension flows.
- The existence of (a_n) ⊂ Z for which (*) holds for u = µ is not surprising: for any u with ∑_{n≤N} u(n) = o(N), it suffices to assume that (a_n) is increasing sufficiently slowly.
 E.g. for u = µ, we can take ([n^c]) with 0 < c < 1.¹

¹N. Frantzikinakis, private communication

We will find sequences $(a_n) \subset \mathbb{Z}$ such that

$$\sum_{n \leq N} f(R^{a_n} z) \boldsymbol{u}(n) = o(N) \quad (*)$$

- Looking at sequences (a_n) allows us to look at the actions of lcsc groups, not only G = Z, e.g. at flows.
- In fact, we will produce "good" (a_n) ⊂ Z satisfying (*) by producing "good" (b_n) ⊂ R, taking a_n := [b_n] and using suspension flows.
- The existence of (a_n) ⊂ Z for which (*) holds for u = µ is not surprising: for any u with ∑_{n≤N} u(n) = o(N), it suffices to assume that (a_n) is increasing sufficiently slowly.
 E.g. for u = µ, we can take ([n^c]) with 0 < c < 1.¹

¹N. Frantzikinakis, private communication

Our sequences differ from the slowly increasing sequences.

Let $F: \mathbb{N} \to \mathbb{C}$ be bdd. Suppose that $\sum_{n \leq N} F(rn)\overline{F(sn)} = o(N)$ for any sufficiently large primes $r \neq s$. Then

 $\sum_{n\leq N} F(n)\boldsymbol{u}(n) = \mathrm{o}(N)$

for any multiplicative function \boldsymbol{u} with $|\boldsymbol{u}| \leq 1.^2$

 $F(n) = f(T^n x)$ for $n \in \mathbb{Z}, x \in X$ and $f \in C(X)$.

- Our sequences $(b_n) \subset \mathbb{R}$ will satisfy $\sum_{n \leq N} f(S_{b_{pn}} x) \overline{f(S_{b_{qn}} x)} = o(N)$ for any $f \in C(X)$, $\int f = 0$ and **any uniquely ergodic flow** $S = (S_t)_{t \in \mathbb{R}}$. In particular, $\sum_{n \leq N} f(S_{b_n} x) u(n) = o(N)$.³
- Note that this will fail for a slowly increasing sequence $(a_n) \subset \mathbb{Z}$ whenever $\sum_{n \leq N} u(n) \neq o(N)$.

²Kátai 1986, Bourgain-Sarnak-Ziegler 2011

Our sequences differ from the slowly increasing sequences.

Let $F : \mathbb{N} \to \mathbb{C}$ be bdd. Suppose that $\sum_{n \le N} F(rn)\overline{F(sn)} = o(N)$ for any sufficiently large primes $r \ne s$. Then

 $\sum_{n\leq N} F(n)\boldsymbol{u}(n) = \mathrm{o}(N)$

for any multiplicative function \boldsymbol{u} with $|\boldsymbol{u}| \leq 1.^2$

 $F(n) = f(T^n x)$ for $n \in \mathbb{Z}, x \in X$ and $f \in C(X)$.

• Our sequences $(\underline{b}_n) \subset \mathbb{R}$ will satisfy $\sum_{n \leq N} f(S_{\underline{b}_{pn}}x)f(S_{\underline{b}_{qn}}x) = o(N)$ for any $f \in C(X)$, $\int f = 0$ and **any uniquely ergodic flow** $S = (S_t)_{t \in \mathbb{R}}$. In particular, $\sum_{n \leq N} f(S_{\underline{b}_n}x)\mathbf{u}(n) = o(N)$.³

Note that this will fail for a slowly increasing sequence $(a_n) \subset \mathbb{Z}$ whenever $\sum_{n \leq N} u(n) \neq o(N)$.

²Kátai 1986, Bourgain-Sarnak-Ziegler 2011

Our sequences differ from the slowly increasing sequences.

Let $F: \mathbb{N} \to \mathbb{C}$ be bdd. Suppose that $\sum_{n \le N} F(rn)\overline{F(sn)} = o(N)$ for any sufficiently large primes $r \ne s$. Then

 $\sum_{n\leq N} F(n)\boldsymbol{u}(n) = \mathrm{o}(N)$

for any multiplicative function \boldsymbol{u} with $|\boldsymbol{u}| \leq 1.^2$

 $F(n) = f(T^n x)$ for $n \in \mathbb{Z}, x \in X$ and $f \in C(X)$.

• Our sequences $(\underline{b}_n) \subset \mathbb{R}$ will satisfy $\sum_{n \leq N} f(S_{\underline{b}_{pn}}x) \overline{f(S_{\underline{b}_{qn}}x)} = o(N)$ for any $f \in C(X)$, $\int f = 0$ and **any uniquely ergodic flow** $S = (S_t)_{t \in \mathbb{R}}$. In particular, $\sum_{n \leq N} f(S_{\underline{b}_n}x) u(n) = o(N)$.³

Note that this will fail for a slowly increasing sequence $(a_n) \subset \mathbb{Z}$ whenever $\sum_{n \leq N} u(n) \neq o(N)$.

²Kátai 1986, Bourgain-Sarnak-Ziegler 2011

Our sequences differ from the slowly increasing sequences.

Let $F : \mathbb{N} \to \mathbb{C}$ be bdd. Suppose that $\sum_{n \le N} F(rn)\overline{F(sn)} = o(N)$ for any sufficiently large primes $r \ne s$. Then

 $\sum_{n\leq N} F(n)\boldsymbol{u}(n) = \mathrm{o}(N)$

for any multiplicative function \boldsymbol{u} with $|\boldsymbol{u}| \leq 1.^2$

 $F(n) = f(T^n x)$ for $n \in \mathbb{Z}, x \in X$ and $f \in C(X)$.

 Our sequences (b_n) ⊂ ℝ will satisfy
 ∑_{n≤N} f(S_{bpn}x) f(S_{bqn}x) = o(N) for any f ∈ C(X), ∫ f = 0
 and any uniquely ergodic flow S = (S_t)_{t∈ℝ}.
 In particular, ∑_{n≤N} f(S_{bn}x)u(n) = o(N).³
 Note that this will fail for a slowly increasing sequence

 $(a_n) \subset \mathbb{Z}$ whenever $\sum_{n \leq N} \boldsymbol{u}(n) \neq o(N)$.

²Kátai 1986, Bourgain-Sarnak-Ziegler 2011

Our sequences differ from the slowly increasing sequences.

Let $F : \mathbb{N} \to \mathbb{C}$ be bdd. Suppose that $\sum_{n \le N} F(rn)\overline{F(sn)} = o(N)$ for any sufficiently large primes $r \ne s$. Then

 $\sum_{n\leq N} F(n)\boldsymbol{u}(n) = \mathrm{o}(N)$

for any multiplicative function \boldsymbol{u} with $|\boldsymbol{u}| \leq 1.^2$

 $F(n) = f(T^n x)$ for $n \in \mathbb{Z}, x \in X$ and $f \in C(X)$.

- Our sequences (b_n) ⊂ ℝ will satisfy
 ∑_{n≤N} f(S_{bpn}x)f(S_{bqn}x) = o(N) for any f ∈ C(X), ∫ f = 0
 and any uniquely ergodic flow S = (S_t)_{t∈ℝ}.
 In particular, ∑_{n≤N} f(S_{bn}x)u(n) = o(N).³
 Note that this will fail for a slowly increasing sequence
- $(a_n) \subset \mathbb{Z}$ whenever $\sum_{n < N} u(n) \neq o(N)$.

²Kátai 1986, Bourgain-Sarnak-Ziegler 2011

Our sequences also differ from $a_n = n$.

- (-1)ⁿ⁺¹ is multiplicative and at the same time this sequence is uniquely ergodic. (-1)ⁿ⁺¹ is not orthogonal to itself!
- We do not expect Möbius disjointness (u = µ) along a_n = n to hold for all uniquely ergodic automorphisms.⁴ This would imply that the Chowla conjecture fails:
 - If Chowla conjecture holds then in particular μ is generic for an ergodic measure.
 - Any sequence generic for an ergodic measure can be approximated by a sequence generic for a uniquely ergodic dynamical system.⁵

⁴Downarowicz

⁵Weiss 2000

Our sequences also differ from $a_n = n$.

- (-1)ⁿ⁺¹ is multiplicative and at the same time this sequence is uniquely ergodic. (-1)ⁿ⁺¹ is not orthogonal to itself!
- We do not expect Möbius disjointness (u = µ) along a_n = n to hold for all uniquely ergodic automorphisms.⁴ This would imply that the Chowla conjecture fails:
 - If Chowla conjecture holds then in particular μ is generic for an ergodic measure.
 - Any sequence generic for an ergodic measure can be approximated by a sequence generic for a uniquely ergodic dynamical system.⁵

⁴Downarowicz

⁵Weiss 2000

Our sequences also differ from $a_n = n$.

- (-1)ⁿ⁺¹ is multiplicative and at the same time this sequence is uniquely ergodic. (-1)ⁿ⁺¹ is not orthogonal to itself!
- We do not expect Möbius disjointness (u = µ) along a_n = n to hold for all uniquely ergodic automorphisms.⁴ This would imply that the Chowla conjecture fails:
 - If Chowla conjecture holds then in particular μ is generic for an ergodic measure.
 - Any sequence generic for an ergodic measure can be approximated by a sequence generic for a uniquely ergodic dynamical system.⁵

⁴Downarowicz

⁵Weiss 2000

Our sequences also differ from $a_n = n$.

- (-1)ⁿ⁺¹ is multiplicative and at the same time this sequence is uniquely ergodic. (-1)ⁿ⁺¹ is not orthogonal to itself!
- We do not expect Möbius disjointness (u = µ) along a_n = n to hold for all uniquely ergodic automorphisms.⁴ This would imply that the Chowla conjecture fails:
 - If Chowla conjecture holds then in particular μ is generic for an ergodic measure.
 - Any sequence generic for an ergodic measure can be approximated by a sequence generic for a uniquely ergodic dynamical system.⁵

⁴Downarowicz

⁵Weiss 2000

Our sequences also differ from $a_n = n$.

- (-1)ⁿ⁺¹ is multiplicative and at the same time this sequence is uniquely ergodic. (-1)ⁿ⁺¹ is not orthogonal to itself!
- We do not expect Möbius disjointness $(\boldsymbol{u} = \boldsymbol{\mu})$ along $a_n = n$ to hold for all uniquely ergodic automorphisms.⁴

This would imply that the Chowla conjecture fails:

- If Chowla conjecture holds then in particular μ is generic for an ergodic measure.
- Any sequence generic for an ergodic measure can be approximated by a sequence generic for a uniquely ergodic dynamical system.⁵

Our sequences also differ from $a_n = n$.

- (-1)ⁿ⁺¹ is multiplicative and at the same time this sequence is uniquely ergodic. (-1)ⁿ⁺¹ is not orthogonal to itself!
- We do not expect Möbius disjointness (*u* = μ) along *a_n* = *n* to hold for all uniquely ergodic automorphisms.⁴
 This would imply that the Chowla conjecture fails:
 - If Chowla conjecture holds then in particular μ is generic for an ergodic measure.
 - Any sequence generic for an ergodic measure can be approximated by a sequence generic for a uniquely ergodic dynamical system.⁵

Our sequences also differ from $a_n = n$.

- (-1)ⁿ⁺¹ is multiplicative and at the same time this sequence is uniquely ergodic. (-1)ⁿ⁺¹ is not orthogonal to itself!
- We do not expect Möbius disjointness (*u* = μ) along *a_n* = *n* to hold for all uniquely ergodic automorphisms.⁴ This would imply that the Chowla conjecture fails:
 - If Chowla conjecture holds then in particular μ is generic for an ergodic measure.
 - Any sequence generic for an ergodic measure can be approximated by a sequence generic for a uniquely ergodic dynamical system.⁵

Our sequences also differ from $a_n = n$.

- (-1)ⁿ⁺¹ is multiplicative and at the same time this sequence is uniquely ergodic. (-1)ⁿ⁺¹ is not orthogonal to itself!
- We do not expect Möbius disjointness (u = μ) along a_n = n to hold for all uniquely ergodic automorphisms.⁴ This would imply that the Chowla conjecture fails:
 - If Chowla conjecture holds then in particular μ is generic for an ergodic measure.
 - Any sequence generic for an ergodic measure can be approximated by a sequence generic for a uniquely ergodic dynamical system.⁵

Our sequences won't be increasing. They will origin from random constructions (and depend on an additional parameter).

⁴Downarowicz ⁵Weiss 2000

Our sequences also differ from $a_n = n$.

- (-1)ⁿ⁺¹ is multiplicative and at the same time this sequence is uniquely ergodic. (-1)ⁿ⁺¹ is not orthogonal to itself!
- We do not expect Möbius disjointness (u = μ) along a_n = n to hold for all uniquely ergodic automorphisms.⁴ This would imply that the Chowla conjecture fails:
 - If Chowla conjecture holds then in particular μ is generic for an ergodic measure.
 - Any sequence generic for an ergodic measure can be approximated by a sequence generic for a uniquely ergodic dynamical system.⁵

⁴Downarowicz

⁵Weiss 2000

Why random sequences?

Recall that in the classical setting we study the convergence of

 $\frac{1}{N}\sum_{n\leq N}f(S^ny)\mu(n).$

We will have "random homeomorphisms" $S = (S_x)_{x \in X}$ on Y and study

$$\tfrac{1}{N}\sum_{n\leq N}f(S_x^{(n)}(y))\mu(n) \quad (*).$$

Instead of S^n , we will deal with "random powers" $(S_x^{(n)})$, i.e. there will be a homeomorphism $T: X \to X$ and

$$S_{X}^{(n)} = S_{T^{n-1}x} \circ \cdots \circ S_{Tx} \circ S_{x}.$$

Why random sequences?

Recall that in the classical setting we study the convergence of

 $\frac{1}{N}\sum_{n\leq N}f(S^ny)\mu(n).$

We will have "random homeomorphisms" $\mathcal{S} = (S_x)_{x \in X}$ on Y and study

$$\tfrac{1}{N}\sum_{n\leq N}f(S_x^{(n)}(y))\mu(n) \quad \ (*).$$

Instead of S^n , we will deal with "random powers" $(S_x^{(n)})$, i.e. there will be a homeomorphism $T: X \to X$ and

$$S_x^{(n)} = S_{T^{n-1}x} \circ \cdots \circ S_{Tx} \circ S_x.$$

Why random sequences?

Recall that in the classical setting we study the convergence of

 $\frac{1}{N}\sum_{n\leq N}f(S^ny)\mu(n).$

We will have "random homeomorphisms" $\mathcal{S} = (S_x)_{x \in X}$ on Y and study

$$\frac{1}{N}\sum_{n\leq N}f(S_x^{(n)}(y))\mu(n) \quad (*).$$

Instead of S^n , we will deal with "random powers" $(S_x^{(n)})$, i.e. there will be a homeomorphism $T: X \to X$ and

$$S_x^{(n)} = S_{T^{n-1}x} \circ \cdots \circ S_{Tx} \circ S_x.$$

Why random sequences?

Recall that in the classical setting we study the convergence of

 $\frac{1}{N}\sum_{n\leq N}f(S^ny)\mu(n).$

We will have "random homeomorphisms" $\mathcal{S} = (S_x)_{x \in X}$ on Y and study

$$\frac{1}{N}\sum_{n\leq N}f(S_x^{(n)}(y))\mu(n) \quad (*).$$

Instead of S^n , we will deal with "random powers" $(S_x^{(n)})$, i.e. there will be a homeomorphism $T: X \to X$ and

$$S_x^{(n)} = S_{T^{n-1}x} \circ \cdots \circ S_{Tx} \circ S_x.$$

1 Introduction

2 Basic notions

Let $T \in Aut(X, \mathcal{B}, \mu)$, $S \in Aut(Y, \mathcal{C}, \nu)$.

- S is called a factor of T if S ∘ π = π ∘ T and π_{*}(μ) = ν for some π: X → Y. We also say that T is an extension of S and write T: B → C or T → S.
- 2 Measure λ on $(X \times Y, \mathcal{B} \otimes \mathcal{C})$ is called a joining of \mathcal{T} and S if $(\mathcal{T} \times S)_*(\lambda) = \lambda$,
 - $\lambda|_{\mathcal{B}\otimes\{\emptyset,Y\}} = \mu \text{ and } \lambda|_{\{\emptyset,X\}\otimes\mathcal{C}} = \nu.$

Notation: J(T, S), $J^e(T, S)$.

- Both *T* and *S* are factors of each of their joinings.
- $J^e(T, S)$ is non-empty iff T and S are ergodic.
- If $\mu \otimes \nu$ is the only element of J(T, S), we say that T and S are disjoint.⁶

E.g. *Id* is disjoint from T, whenever T is ergodic.

⁶Note that this implies that at least one of them must be ergodic.

Let $T \in Aut(X, \mathcal{B}, \mu)$, $S \in Aut(Y, \mathcal{C}, \nu)$.

- S is called a factor of T if S ∘ π = π ∘ T and π_{*}(μ) = ν for some π: X → Y. We also say that T is an extension of S and write T: B → C or T → S.
- **2** Measure λ on $(X \times Y, \mathcal{B} \otimes \mathcal{C})$ is called a joining of \mathcal{T} and S if

$$(T \times S)_*(\lambda) = \lambda,$$

•
$$\lambda|_{\mathcal{B}\otimes\{\emptyset,Y\}} = \mu$$
 and $\lambda|_{\{\emptyset,X\}\otimes\mathcal{C}} = \nu$.

Notation: J(T, S), $J^e(T, S)$.

- Both T and S are factors of each of their joinings.
- $J^e(T, S)$ is non-empty iff T and S are ergodic.
- If $\mu \otimes \nu$ is the only element of J(T, S), we say that T and S are disjoint.⁶

E.g. *Id* is disjoint from T, whenever T is ergodic.

⁶Note that this implies that at least one of them must be ergodic.

Let $T \in Aut(X, \mathcal{B}, \mu)$, $S \in Aut(Y, \mathcal{C}, \nu)$.

- S is called a factor of T if S ∘ π = π ∘ T and π_{*}(μ) = ν for some π: X → Y. We also say that T is an extension of S and write T: B → C or T → S.
- **2** Measure λ on $(X \times Y, \mathcal{B} \otimes \mathcal{C})$ is called a joining of \mathcal{T} and S if

$$(T \times S)_*(\lambda) = \lambda,$$

$$\lambda|_{\mathcal{B}\otimes\{\emptyset,Y\}} = \mu \text{ and } \lambda|_{\{\emptyset,X\}\otimes\mathcal{C}} = \nu.$$

Notation: J(T, S), $J^e(T, S)$.

- Both T and S are factors of each of their joinings.
- $J^e(T, S)$ is non-empty iff T and S are ergodic.
- If $\mu \otimes \nu$ is the only element of J(T, S), we say that T and S are disjoint.⁶

E.g. *Id* is disjoint from T, whenever T is ergodic.

⁶Note that this implies that at least one of them must be ergodic.

Let $T \in Aut(X, \mathcal{B}, \mu)$, $S \in Aut(Y, \mathcal{C}, \nu)$.

- S is called a factor of T if S ∘ π = π ∘ T and π_{*}(μ) = ν for some π: X → Y. We also say that T is an extension of S and write T: B → C or T → S.
- **2** Measure λ on $(X \times Y, \mathcal{B} \otimes \mathcal{C})$ is called a joining of T and S if

$$(T \times S)_*(\lambda) = \lambda,$$

$$\lambda|_{\mathcal{B}\otimes\{\emptyset,Y\}} = \mu \text{ and } \lambda|_{\{\emptyset,X\}\otimes\mathcal{C}} = \nu.$$

Notation: J(T, S), $J^e(T, S)$.

Both *T* and *S* are factors of each of their joinings.

J^e(T, S) is non-empty iff T and S are ergodic.

If µ ⊗ ν is the only element of J(T, S), we say that T and S are disjoint.⁶

E.g. *Id* is disjoint from T, whenever T is ergodic.

⁶Note that this implies that at least one of them must be ergodic.

Let $T \in Aut(X, \mathcal{B}, \mu)$, $S \in Aut(Y, \mathcal{C}, \nu)$.

- S is called a factor of T if S ∘ π = π ∘ T and π_{*}(μ) = ν for some π: X → Y. We also say that T is an extension of S and write T: B → C or T → S.
- **2** Measure λ on $(X \times Y, \mathcal{B} \otimes \mathcal{C})$ is called a joining of \mathcal{T} and S if

$$(T \times S)_*(\lambda) = \lambda,$$

•
$$\lambda|_{\mathcal{B}\otimes\{\emptyset,Y\}} = \mu \text{ and } \lambda|_{\{\emptyset,X\}\otimes\mathcal{C}} = \nu.$$

Notation: J(T,S), $J^e(T,S)$.

- Both *T* and *S* are factors of each of their joinings.
- $J^e(T, S)$ is non-empty iff T and S are ergodic.
- If $\mu \otimes \nu$ is the only element of J(T, S), we say that T and S are disjoint.⁶

E.g. *Id* is disjoint from T, whenever T is ergodic.

⁶Note that this implies that at least one of them must be ergodic.

Let $T \in Aut(X, \mathcal{B}, \mu)$, $S \in Aut(Y, \mathcal{C}, \nu)$.

- S is called a factor of T if S ∘ π = π ∘ T and π_{*}(μ) = ν for some π: X → Y. We also say that T is an extension of S and write T: B → C or T → S.
- **2** Measure λ on $(X \times Y, \mathcal{B} \otimes \mathcal{C})$ is called a joining of \mathcal{T} and S if

$$(T \times S)_*(\lambda) = \lambda,$$

•
$$\lambda|_{\mathcal{B}\otimes\{\emptyset,Y\}} = \mu$$
 and $\lambda|_{\{\emptyset,X\}\otimes\mathcal{C}} = \nu$.

Notation: J(T,S), $J^e(T,S)$.

- Both *T* and *S* are factors of each of their joinings.
- $J^e(T, S)$ is non-empty iff T and S are ergodic.
- If $\mu \otimes \nu$ is the only element of J(T, S), we say that T and S are disjoint.⁶

E.g. Id is disjoint from T, whenever T is ergodic.

⁶Note that this implies that at least one of them must be ergodic.

Tools to prove Möbius disjointness and beyond

Let $T \in Aut(X, \mathcal{B}, \mu)$ be ergodic.

 AOP (asymptotical orthogonality of powers)⁷ is one of the most useful tools to prove Möbius disjointness for a particular dynamical system. We say that T has AOP whenever

$$\limsup_{p\neq q, p, q\to\infty} \sup_{\kappa\in J^e(T^p, T^q)} \left| \int_{X\times X} f\otimes g \, d\kappa \right| = 0.$$

If T satisfies AOP, then Möbius disjointness holds in any uniquely ergodic model of T.⁷

- Recall that (S, Y) is a uniquely ergodic model of (X, \mathcal{B}, μ, T) if $(X, \mathcal{B}, \mu, T) \simeq (Y, \mathcal{B}(Y), \nu, S)$, where $\mathcal{B}(Y)$ is the sigma-algebra of Borel sets and ν is the unique *S*-invariant measure.
- Each ergodic T has a uniquely ergodic model.⁸

⁷Abdalaoui, Lemańczyk, de la Rue 2016 ⁸Jewett-Krieger 1970
Let $T \in Aut(X, \mathcal{B}, \mu)$ be ergodic.

AOP (asymptotical orthogonality of powers)⁷ is one of the most useful tools to prove Möbius disjointness for a particular dynamical system. We say that T has AOP whenever

$$\limsup_{p\neq q, p, q\to\infty} \sup_{\kappa\in J^e(T^p, T^q)} \left| \int_{X\times X} f\otimes g \, d\kappa \right| = 0.$$

If T satisfies AOP, then Möbius disjointness holds in any uniquely ergodic model of T.⁷

- Recall that (S, Y) is a uniquely ergodic model of (X, \mathcal{B}, μ, T) if $(X, \mathcal{B}, \mu, T) \simeq (Y, \mathcal{B}(Y), \nu, S)$, where $\mathcal{B}(Y)$ is the sigma-algebra of Borel sets and ν is the unique S-invariant measure.
- Each ergodic T has a uniquely ergodic model.⁸

⁷Abdalaoui, Lemańczyk, de la Rue 2016 ⁸Jewett-Krieger 1970

Let $T \in Aut(X, \mathcal{B}, \mu)$ be ergodic.

AOP (asymptotical orthogonality of powers)⁷ is one of the most useful tools to prove Möbius disjointness for a particular dynamical system. We say that T has AOP whenever

$$\limsup_{p\neq q, p, q\to\infty} \sup_{\kappa\in J^e(T^p, T^q)} \left| \int_{X\times X} f\otimes g \, d\kappa \right| = 0.$$

If T satisfies AOP, then Möbius disjointness holds in any uniquely ergodic model of T.⁷

- Recall that (S, Y) is a uniquely ergodic model of (X, \mathcal{B}, μ, T) if $(X, \mathcal{B}, \mu, T) \simeq (Y, \mathcal{B}(Y), \nu, S)$, where $\mathcal{B}(Y)$ is the sigma-algebra of Borel sets and ν is the unique S-invariant measure.
- Each ergodic T has a uniquely ergodic model.⁸

⁷Abdalaoui, Lemańczyk, de la Rue 2016 ⁸Jewett-Krieger 1970

Let $T \in Aut(X, \mathcal{B}, \mu)$ be ergodic.

AOP (asymptotical orthogonality of powers)⁷ is one of the most useful tools to prove Möbius disjointness for a particular dynamical system. We say that T has AOP whenever

$$\lim_{p\neq q,p,q\to\infty} \sup_{\kappa\in J^e(T^p,T^q)} \left| \int_{X\times X} f\otimes g\,d\kappa \right| = 0.$$

If T satisfies AOP, then Möbius disjointness holds in any uniquely ergodic model of T.⁷

- Recall that (S, Y) is a uniquely ergodic model of (X, B, μ, T) if (X, B, μ, T) ≃ (Y, B(Y), ν, S), where B(Y) is the sigma-algebra of Borel sets and ν is the unique S-invariant measure.
- Each ergodic T has a uniquely ergodic model.⁸

⁷Abdalaoui, Lemańczyk, de la Rue 2016 ⁸Jewett-Krieger 1970

Assume that T is a uniquely ergodic homeomorphism of X.

AOP implies strong MOMO (Möbius orthogonality of moving orbits) [relative to u]:⁹

$$\lim_{K\to\infty}\frac{1}{b_{K+1}}\sum_{k\leq K}\left|\sum_{b_k\leq n< b_{k+1}}f(T^nx_k)\boldsymbol{u}(n)\right|=0,$$

for each multiplicative \boldsymbol{u} , $|\boldsymbol{u}| \leq 1$, each $(b_k) \subset \mathbb{N}$ with $b_{k+1} - b_k \to \infty$ and each choice of $x_k \in X$, $k \geq 1$, and $f \in C(X)$, $\int f d\mu = 0$.

In particular,¹⁰ we have so called or orthogonality to *u* on a typical short interval:

$$\frac{1}{M}\sum_{M \leq m < 2M} \left| \frac{1}{H}\sum_{m \leq h < m+H} f(T^{h}x) \boldsymbol{u}(h) \right| \to 0$$

when $H \to \infty$, $H/M \to 0$.

⁹Abdalaoui, KP, Lemańczyk, de la Rue 2016 ¹⁰Abdalaoui, Lemańczyk, de la Rue 2016

Assume that T is a uniquely ergodic homeomorphism of X.

 AOP implies strong MOMO (Möbius orthogonality of moving orbits) [relative to u]:⁹

$$\lim_{K\to\infty}\frac{1}{b_{K+1}}\sum_{k\leq K}\left|\sum_{b_k\leq n< b_{k+1}}f(T^nx_k)\boldsymbol{u}(n)\right|=0,$$

for each multiplicative \boldsymbol{u} , $|\boldsymbol{u}| \leq 1$, each $(b_k) \subset \mathbb{N}$ with $b_{k+1} - b_k \to \infty$ and each choice of $x_k \in X$, $k \geq 1$, and $f \in C(X)$, $\int f d\mu = 0$.

In particular,¹⁰ we have so called or orthogonality to *u* on a typical short interval:

$$\frac{1}{M}\sum_{M\leq m<2M}\left|\frac{1}{H}\sum_{m\leq h< m+H}f(T^{h}x)\boldsymbol{u}(h)\right|\to 0$$

when $H \rightarrow \infty$, $H/M \rightarrow 0$.

⁹Abdalaoui, KP, Lemańczyk, de la Rue 2016 ¹⁰Abdalaoui, Lemańczyk, de la Rue 2016

1 Compact group extensions: G – compact group, $\varphi \colon X \to G$ – measurable

 $T_{\varphi}(x,g) = (Tx,\varphi(x)g)$

(the same formula for lscs groups)

- 2 Isometric extensions:
 - all "intermediate" extensions of cpt. group extensions, i.e. $T: \mathcal{B} \to \mathcal{A}$ is isometric if we have $\mathcal{C} \supset \mathcal{B} \supset \mathcal{A}$ and $\overline{T}: \mathcal{C} \to \mathcal{A}$ is compact group extension.
- 3 Distal extensions:

 $T: \mathcal{B} \to \mathcal{A}$ is distal if it can be represented as a transfinite sequence of isometric extensions (+ passage to inverse limits)

I Compact group extensions: G – compact group, $\varphi: X \to G$ – measurable

 $T_{\varphi}(x,g) = (Tx,\varphi(x)g)$

(the same formula for lscs groups)

- **2** Isometric extensions:
 - all "intermediate" extensions of cpt. group extensions, i.e. $T: \mathcal{B} \to \mathcal{A}$ is isometric if we have $\mathcal{C} \supset \mathcal{B} \supset \mathcal{A}$ and $\overline{T}: \mathcal{C} \to \mathcal{A}$ is compact group extension.

3 Distal extensions:

 $T: \mathcal{B} \to \mathcal{A}$ is distal if it can be represented as a transfinite sequence of isometric extensions (+ passage to inverse limits)

I Compact group extensions: G – compact group, $\varphi: X \to G$ – measurable

 $T_{\varphi}(x,g) = (Tx,\varphi(x)g)$

(the same formula for lscs groups)

- **2** Isometric extensions:
 - all "intermediate" extensions of cpt. group extensions, i.e. $T: \mathcal{B} \to \mathcal{A}$ is isometric if we have $\mathcal{C} \supset \mathcal{B} \supset \mathcal{A}$ and $\overline{T}: \mathcal{C} \to \mathcal{A}$ is compact group extension.
- 3 Distal extensions:

 $T: \mathcal{B} \to \mathcal{A}$ is distal if it can be represented as a transfinite sequence of isometric extensions (+ passage to inverse limits)

4 Relatively weakly mixing extensions: T : B → A is relatively weakly mixing if the relatively independent joining over A

$$\mu \otimes_{\mathcal{A}} \mu(A \times B) = \int_{X/\mathcal{A}} E(\mathbb{1}_A | \mathcal{A}) \cdot E(\mathbb{1}_B | \mathcal{A}) \ d\mu|_{\mathcal{A}} \text{ for } A, B \in \mathcal{B}$$

is ergodic for $T \times T$.

• E.g.:
$$S \times T \to S$$
 is relatively WM $\iff T$ is WM

- Relatively weakly mixing extensions are relatively disjoint from relatively distal extensions.
- Let \mathcal{A} be a factor of $T \in Aut(X, \mathcal{B}, \mu)$. There exists an "intermediate" factor \mathcal{C} such that:

• $T: \mathcal{B} \to \mathcal{C}$ is rel. weakly-mixing

 $\blacksquare \ T: \mathcal{C} \to \mathcal{A} \text{ is distal}$

and this decomposition is unique.¹¹

4 Relatively weakly mixing extensions: T : B → A is relatively weakly mixing if the relatively independent joining over A

$$\mu \otimes_{\mathcal{A}} \mu(A \times B) = \int_{X/\mathcal{A}} E(\mathbb{1}_A | \mathcal{A}) \cdot E(\mathbb{1}_B | \mathcal{A}) \ d\mu|_{\mathcal{A}} \text{ for } A, B \in \mathcal{B}$$

is ergodic for $T \times T$.

• E.g.: $S \times T \to S$ is relatively WM $\iff T$ is WM

- Relatively weakly mixing extensions are relatively disjoint from relatively distal extensions.
- Let \mathcal{A} be a factor of $T \in Aut(X, \mathcal{B}, \mu)$. There exists an "intermediate" factor \mathcal{C} such that:

• $T: \mathcal{B} \to \mathcal{C}$ is rel. weakly-mixing

 $\blacksquare \ T: \mathcal{C} \to \mathcal{A} \text{ is distal}$

and this decomposition is unique.¹¹

4 Relatively weakly mixing extensions: T : B → A is relatively weakly mixing if the relatively independent joining over A

$$\mu \otimes_{\mathcal{A}} \mu(A \times B) = \int_{X/\mathcal{A}} E(\mathbb{1}_A | \mathcal{A}) \cdot E(\mathbb{1}_B | \mathcal{A}) \ d\mu|_{\mathcal{A}} \text{ for } A, B \in \mathcal{B}$$

is ergodic for $T \times T$.

• E.g.:
$$S \times T \to S$$
 is relatively WM $\iff T$ is WM

 Relatively weakly mixing extensions are relatively disjoint from relatively distal extensions.

• Let
$$\mathcal{A}$$
 be a factor of $T \in Aut(X, \mathcal{B}, \mu)$. There exists an "intermediate" factor \mathcal{C} such that:

T:
$$\mathcal{B} \to \mathcal{C}$$
 is rel. weakly-mixing

 $\blacksquare \ T: \mathcal{C} \to \mathcal{A} \text{ is distal}$

and this decomposition is unique.¹¹

4 Relatively weakly mixing extensions: $T: \mathcal{B} \to \mathcal{A}$ is relatively weakly mixing if the relatively independent joining over \mathcal{A}

$$\mu \otimes_{\mathcal{A}} \mu(A \times B) = \int_{X/\mathcal{A}} E(\mathbb{1}_A | \mathcal{A}) \cdot E(\mathbb{1}_B | \mathcal{A}) \ d\mu|_{\mathcal{A}} \text{ for } A, B \in \mathcal{B}$$

is ergodic for $T \times T$.

• E.g.: $S \times T \rightarrow S$ is relatively WM $\iff T$ is WM

- Relatively weakly mixing extensions are relatively disjoint from relatively distal extensions.
- Let \mathcal{A} be a factor of $T \in Aut(X, \mathcal{B}, \mu)$. There exists an "intermediate" factor C such that:
 - T: $\mathcal{B} \to \mathcal{C}$ is rel. weakly-mixing T: $\mathcal{C} \to \mathcal{A}$ is distal

and this decomposition is unique.¹¹

Basic notions: extensions vs. Möbius disjointness

While there were some results concerning lifting Möbius disjointness to distal extensions of rotations:

- Green, Tao 2012: affine unipotent diffeomorphisms on G/Γ ;
- Liu, Sarnak 2015: analytic Anzai skew products (+ an extra assumption) over rotations, all zero entropy affine systems;
- Wang 2015: analytic skew products over rotations;
- KP, Lemańczyk 2015: $C^{1+\delta}$ -extensions of a typical rotation;

Little was known in case of relatively weakly mixing extensions.

Basic notions: extensions vs. Möbius disjointness

While there were some results concerning lifting Möbius disjointness to distal extensions of rotations:

- Green, Tao 2012: affine unipotent diffeomorphisms on G/Γ ;
- Liu, Sarnak 2015: analytic Anzai skew products (+ an extra assumption) over rotations, all zero entropy affine systems;
- Wang 2015: analytic skew products over rotations;
- KP, Lemańczyk 2015: $C^{1+\delta}$ -extensions of a typical rotation;

Little was known in case of relatively weakly mixing extensions.

Basic notions: extensions vs. Möbius disjointness

While there were some results concerning lifting Möbius disjointness to distal extensions of rotations:

- Green, Tao 2012: affine unipotent diffeomorphisms on G/Γ ;
- Liu, Sarnak 2015: analytic Anzai skew products (+ an extra assumption) over rotations, all zero entropy affine systems;
- Wang 2015: analytic skew products over rotations;
- KP, Lemańczyk 2015: $C^{1+\delta}$ -extensions of a typical rotation;

Little was known in case of relatively weakly mixing extensions.

Assume that:

• $T \in Aut(X, \mathcal{B}, \mu)$ is ergodic,

• $\varphi: X \to G$ is a cocycle with values in a lcsc Abelian group,

•
$$G \ni g \mapsto S_g \in Aut(Y, C, \nu)$$
 is a (measurable)
G-representation (denoted by *S*) that is ergodic.

Then

$$T_{arphi,\mathcal{S}}(x,y) = (Tx,S_{arphi(x)}(y)) \text{ for } (x,y) \in X imes Y$$

is called a Rokhlin extension of T. In particular, we can take $G = \mathbb{R}$ and S=a flow.

■ E.g. if $\varphi = const = g$ then $T_{\varphi,S}(x, y) = (Tx, S_g y)$, i.e. we obtain the direct product $T \times S_g$.

Assume that:

• $T \in Aut(X, \mathcal{B}, \mu)$ is ergodic,

• $\varphi: X \to G$ is a cocycle with values in a lcsc Abelian group,

•
$$G \ni g \mapsto S_g \in Aut(Y, \mathcal{C}, \nu)$$
 is a (measurable)

G-representation (denoted by S) that is ergodic.

Then

$$\mathcal{T}_{arphi,\mathcal{S}}(x,y)=(\mathit{T}x,\mathcal{S}_{arphi(x)}(y)) ext{ for } (x,y)\in X imes Y$$

is called a Rokhlin extension of T.

In particular, we can take $G = \mathbb{R}$ and S = a flow.

• E.g. if $\varphi = const = g$ then $T_{\varphi,S}(x, y) = (Tx, S_g y)$, i.e. we obtain the direct product $T \times S_g$.

Assume that:

• $T \in Aut(X, \mathcal{B}, \mu)$ is ergodic,

• $\varphi: X \to G$ is a cocycle with values in a lcsc Abelian group,

■
$$G \ni g \mapsto S_g \in Aut(Y, C, \nu)$$
 is a (measurable)
G-representation (denoted by *S*) that is ergodic.

Then

$$T_{arphi,\mathcal{S}}(x,y)=(\mathit{T}x,\mathcal{S}_{arphi(x)}(y)) ext{ for } (x,y)\in X imes Y$$

is called a Rokhlin extension of T. In particular, we can take $G = \mathbb{R}$ and S=a flow.

• E.g. if $\varphi = const = g$ then $T_{\varphi,S}(x, y) = (Tx, S_g y)$, i.e. we obtain the direct product $T \times S_g$.

Assume that:

• $T \in Aut(X, \mathcal{B}, \mu)$ is ergodic,

• $\varphi: X \to G$ is a cocycle with values in a lcsc Abelian group,

•
$$G \ni g \mapsto S_g \in Aut(Y, \mathcal{C}, \nu)$$
 is a (measurable)

G-representation (denoted by S) that is ergodic.

Then

$$\mathcal{T}_{arphi,\mathcal{S}}(x,y)=(\mathit{T}x,\mathcal{S}_{arphi(x)}(y)) ext{ for } (x,y)\in X imes Y$$

is called a Rokhlin extension of T. In particular, we can take $G = \mathbb{R}$ and S=a flow.

• E.g. if $\varphi = const = g$ then $T_{\varphi,S}(x, y) = (Tx, S_g y)$, i.e. we obtain the direct product $T \times S_g$.

$T_{\varphi,\mathcal{S}}(x,y) = (Tx, S_{\varphi(x)}(y)) \text{ for } (x,y) \in X \times Y$

Properties of $T_{\varphi,S}$:¹²

- $T_{\varphi,S}$ is ergodic $\iff T$ is ergodic and $\sigma_S(\Lambda_{\varphi}) = 0$. In particular, if φ and S are ergodic then $T_{\varphi,S}$ is ergodic.
- If *T* is uniquely ergodic, φ is ergodic and *S* is uniquely ergodic then *T*_{φ,S} is uniquely ergodic.
- If φ is ergodic and S is weakly mixing then $T_{\varphi,S} \to T$ is relatively weakly mixing.

¹²Lemańczyk, Lesigne 2003

$$\mathcal{T}_{arphi,\mathcal{S}}(x,y)=(\mathit{T}x,\mathcal{S}_{arphi(x)}(y)) ext{ for } (x,y)\in X imes Y$$

Properties of $T_{\varphi,S}$:¹²

- $T_{\varphi,S}$ is ergodic $\iff T$ is ergodic and $\sigma_{\mathcal{S}}(\Lambda_{\varphi}) = 0$. In particular, if φ and \mathcal{S} are ergodic then $T_{\varphi,S}$ is ergodic.
- If *T* is uniquely ergodic, φ is ergodic and *S* is uniquely ergodic then *T*_{φ,S} is uniquely ergodic.
- If φ is ergodic and S is weakly mixing then $T_{\varphi,S} \to T$ is relatively weakly mixing.

¹²Lemańczyk, Lesigne 2003

$$\mathcal{T}_{arphi,\mathcal{S}}(x,y)=(\mathit{T}x,\mathcal{S}_{arphi(x)}(y)) ext{ for } (x,y)\in X imes Y$$

Properties of $T_{\varphi,\mathcal{S}}$:¹²

- $T_{\varphi,S}$ is ergodic $\iff T$ is ergodic and $\sigma_{\mathcal{S}}(\Lambda_{\varphi}) = 0$. In particular, if φ and \mathcal{S} are ergodic then $T_{\varphi,S}$ is ergodic.
- If T is uniquely ergodic, φ is ergodic and S is uniquely ergodic then $T_{\varphi,S}$ is uniquely ergodic.
- If φ is ergodic and S is weakly mixing then $T_{\varphi,S} \to T$ is relatively weakly mixing.

¹²Lemańczyk, Lesigne 2003

$$\mathcal{T}_{arphi,\mathcal{S}}(x,y)=(\mathit{T}x,\mathcal{S}_{arphi(x)}(y)) ext{ for } (x,y)\in X imes Y$$

Properties of $T_{\varphi,\mathcal{S}}$:¹²

- $T_{\varphi,S}$ is ergodic $\iff T$ is ergodic and $\sigma_{\mathcal{S}}(\Lambda_{\varphi}) = 0$. In particular, if φ and \mathcal{S} are ergodic then $T_{\varphi,S}$ is ergodic.
- If T is uniquely ergodic, φ is ergodic and S is uniquely ergodic then $T_{\varphi,S}$ is uniquely ergodic.
- If φ is ergodic and S is weakly mixing then $T_{\varphi,S} \to T$ is relatively weakly mixing.

¹²Lemańczyk, Lesigne 2003

Basic notions: cocycles

Let $T \in Aut(X, \mathcal{B}, \mu)$, let $\varphi \colon X \to G$ be measurable, with values in a lcsc Abelian group. Consider the group extension:

$$T_{\varphi}(x,g) = (Tx,\varphi(x)+g)$$
 for $x \in X, g \in G$.

Note that $(T_{\varphi})^k(x,g) = (T^k x, \varphi^{(k)}(x) + g)$, where

$$\varphi^{(k)}(x) = \begin{cases} \varphi(x) + \varphi(Tx) + \ldots + \varphi(T^{k-1}x) & \text{if } k \ge 1, \\ 0 & \text{if } k = 0, \\ -(\varphi(T^kx) + \ldots + \varphi(T^{-1}x)) & \text{if } k < 0. \end{cases}$$

Basic notions: cocycles

Let $T \in Aut(X, \mathcal{B}, \mu)$, let $\varphi \colon X \to G$ be measurable, with values in a lcsc Abelian group. Consider the group extension:

$$T_{\varphi}(x,g) = (Tx,\varphi(x)+g)$$
 for $x \in X, g \in G$.

Note that $(T_{\varphi})^k(x,g) = (T^k x, \varphi^{(k)}(x) + g)$, where

$$\varphi^{(k)}(x) = \begin{cases} \varphi(x) + \varphi(Tx) + \ldots + \varphi(T^{k-1}x) & \text{if } k \ge 1, \\ 0 & \text{if } k = 0, \\ -(\varphi(T^kx) + \ldots + \varphi(T^{-1}x)) & \text{if } k < 0. \end{cases}$$

$$T_{\varphi}(x,g) = (Tx, \varphi(x) + g)$$
 for $x \in X, g \in G$.

$$au_{g}(x,g') = (x,g+g') ext{ for } (x,g') \in X imes G.$$

Then τ preserves $\mu \otimes \lambda_G$. Let $\lambda \simeq \lambda_G$ be a probability measure. τ with respect to $\mu \otimes \lambda$ is non-singular.

Notice that $T_{\varphi} \circ \tau_g = \tau_g \circ T_{\varphi}$ for $g \in G$.

Thus, au acts on the σ -algebra of T_{φ} -invariant sets.

Notation: $\mathcal{W}(\varphi)$, $\mathcal{W}(\varphi, T, \mu)$.

It is a non-singular ergodic action (with respect to $\lambda \simeq \lambda_G$).

$$T_{\varphi}(x,g) = (Tx, \varphi(x) + g)$$
 for $x \in X, g \in G$.

$$au_g(x,g') = (x,g+g') ext{ for } (x,g') \in X imes G.$$

Then τ preserves $\mu \otimes \lambda_G$. Let $\lambda \simeq \lambda_G$ be a probability measure. τ with respect to $\mu \otimes \lambda$ is non-singular.

Notice that $T_{\varphi} \circ \tau_g = \tau_g \circ T_{\varphi}$ for $g \in G$. Thus, τ acts on the σ -algebra of T_{φ} -invariant sets. Notation: $\mathcal{W}(\varphi)$, $\mathcal{W}(\varphi, T, \mu)$.

It is a non-singular ergodic action (with respect to $\lambda\simeq\lambda_{\mathcal{G}}).$

$$T_{\varphi}(x,g) = (Tx, \varphi(x) + g)$$
 for $x \in X, g \in G$.

$$au_g(x,g') = (x,g+g') ext{ for } (x,g') \in X imes G.$$

Then τ preserves $\mu \otimes \lambda_G$. Let $\lambda \simeq \lambda_G$ be a probability measure. τ with respect to $\mu \otimes \lambda$ is non-singular.

Notice that $T_{\varphi} \circ \tau_g = \tau_g \circ T_{\varphi}$ for $g \in G$.

Thus, τ acts on the σ -algebra of T_{φ} -invariant sets.

Notation: $\mathcal{W}(\varphi)$, $\mathcal{W}(\varphi, T, \mu)$.

It is a non-singular ergodic action (with respect to $\lambda\simeq\lambda_{G}$).

$$T_{\varphi}(x,g) = (Tx, \varphi(x) + g)$$
 for $x \in X, g \in G$.

$$au_g(x,g') = (x,g+g') ext{ for } (x,g') \in X imes G.$$

Then τ preserves $\mu \otimes \lambda_G$. Let $\lambda \simeq \lambda_G$ be a probability measure. τ with respect to $\mu \otimes \lambda$ is non-singular.

Notice that $T_{\varphi} \circ \tau_g = \tau_g \circ T_{\varphi}$ for $g \in G$.

Thus, τ acts on the σ -algebra of T_{φ} -invariant sets.

Notation: $\mathcal{W}(arphi), \ \mathcal{W}(arphi, \mathcal{T}, \mu).$

It is a non-singular ergodic action (with respect to $\lambda\simeq\lambda_{G}).$

$$T_{\varphi}(x,g) = (Tx, \varphi(x) + g)$$
 for $x \in X, g \in G$.

$$au_g(x,g') = (x,g+g') ext{ for } (x,g') \in X imes G.$$

Then τ preserves $\mu \otimes \lambda_G$. Let $\lambda \simeq \lambda_G$ be a probability measure. τ with respect to $\mu \otimes \lambda$ is non-singular.

Notice that $T_{\varphi} \circ \tau_g = \tau_g \circ T_{\varphi}$ for $g \in G$.

Thus, τ acts on the σ -algebra of T_{φ} -invariant sets.

Notation: $\mathcal{W}(\varphi)$, $\mathcal{W}(\varphi, T, \mu)$.

It is a non-singular ergodic action (with respect to $\lambda \simeq \lambda_G$).

Basic notions: Rokhlin extensions and entropy

- Suppose that φ is recurrent (i.e. φ⁽ⁿ⁾(x) visits each neighborhood of 0 ∈ G infinitely often for a.e. x). Then h(T_{φ,S}) = h(T) for each S.¹³
- If φ is ergodic then it is recurrent.
- In particular, if h(T) = 0 and φ is ergodic, h(T_{φ,S}) = 0 for each S.

Basic notions: Rokhlin extensions and entropy

- Suppose that φ is recurrent (i.e. φ⁽ⁿ⁾(x) visits each neighborhood of 0 ∈ G infinitely often for a.e. x). Then h(T_{φ,S}) = h(T) for each S.¹³
- If φ is ergodic then it is recurrent.
- In particular, if h(T) = 0 and φ is ergodic, h(T_{φ,S}) = 0 for each S.

Basic notions: Rokhlin extensions and entropy

- Suppose that φ is recurrent (i.e. φ⁽ⁿ⁾(x) visits each neighborhood of 0 ∈ G infinitely often for a.e. x). Then h(T_{φ,S}) = h(T) for each S.¹³
- If φ is ergodic then it is recurrent.
- In particular, if h(T) = 0 and φ is ergodic, h(T_{φ,S}) = 0 for each S.

1 Introduction

2 Basic notions

Theorem (KP, Lemańczyk)

Assume that T has the AOP property and for each $r \neq s$, $r, s \in \mathcal{P}$ and arbitrary $\eta \in J^{e}(T^{r}, T^{s})$:

- the group extension $(T_{\varphi})^r \times T^s$ is ergodic over $(T^r \times T^s, \eta)$;
- the Mackey action W((φ^(r) × φ^(s), T^r × T^s, η) is weakly mixing.

Let $S = (S_g)_{g \in G}$ be an ergodic G-action on (Y, C, ν) . Then $T_{\varphi,S}$ has the AOP property.

- $((T_{\varphi})^{r} \times T^{s})(x, t, y) = (T^{r}x, \varphi^{(r)}(x) + t, T^{s}y) = (T^{r} \times T^{s})_{\varphi^{(r)}}(x, y, t)$
- $\chi \in \widehat{G}$ is an L^{∞} -eigenvalue if for some $0 \neq f \in L^{\infty}$, we have $f \circ W_g = \chi(g) \cdot f$ for all $g \in G$.

Theorem (KP, Lemańczyk)

Assume that T has the AOP property and for each $r \neq s$, $r, s \in \mathcal{P}$ and arbitrary $\eta \in J^{e}(T^{r}, T^{s})$:

- the group extension $(T_{\varphi})^r \times T^s$ is ergodic over $(T^r \times T^s, \eta)$;
- the Mackey action W((φ^(r) × φ^(s), T^r × T^s, η) is weakly mixing.

Let $S = (S_g)_{g \in G}$ be an ergodic G-action on (Y, C, ν) . Then $T_{\varphi,S}$ has the AOP property.

- $((T_{\varphi})^r \times T^s)(x, t, y) = (T^r x, \varphi^{(r)}(x) + t, T^s y) = (T^r \times T^s)_{\varphi^{(r)}}(x, y, t)$
- A G-action W is weakly mixing ⇔ the only L[∞] eigenvalue of W is the trivial character.
- $\chi \in \widehat{G}$ is an L^{∞} -eigenvalue if for some $0 \neq f \in L^{\infty}$, we have $f \circ W_g = \chi(g) \cdot f$ for all $g \in G$.
Assume that T has the AOP property and for each $r \neq s$, $r, s \in \mathcal{P}$ and arbitrary $\eta \in J^{e}(T^{r}, T^{s})$:

- the group extension (T_φ)^r × T^s is ergodic over (T^r × T^s, η);
- the Mackey action W((φ^(r) × φ^(s), T^r × T^s, η) is weakly mixing.

- $((T_{\varphi})^r \times T^s)(x, t, y) = (T^r x, \varphi^{(r)}(x) + t, T^s y) = (T^r \times T^s)_{\varphi^{(r)}}(x, y, t)$
- A G-action W is weakly mixing ⇔ the only L[∞] eigenvalue of W is the trivial character.
- $\chi \in \widehat{G}$ is an L^{∞} -eigenvalue if for some $0 \neq f \in L^{\infty}$, we have $f \circ W_g = \chi(g) \cdot f$ for all $g \in G$.

Assume that T has the AOP property and for each $r \neq s$, $r, s \in \mathcal{P}$ and arbitrary $\eta \in J^{e}(T^{r}, T^{s})$:

- the group extension $(T_{\varphi})^r \times T^s$ is ergodic over $(T^r \times T^s, \eta)$;
- the Mackey action W((φ^(r) × φ^(s), T^r × T^s, η) is weakly mixing.

- $((T_{\varphi})^{r} \times T^{s})(x, t, y) = (T^{r}x, \varphi^{(r)}(x) + t, T^{s}y) = (T^{r} \times T^{s})_{\varphi^{(r)}}(x, y, t)$
- $\chi \in \widehat{G}$ is an L^{∞} -eigenvalue if for some $0 \neq f \in L^{\infty}$, we have $f \circ W_g = \chi(g) \cdot f$ for all $g \in G$.

Assume that T has the AOP property and for each $r \neq s$, $r, s \in \mathcal{P}$ and arbitrary $\eta \in J^{e}(T^{r}, T^{s})$:

- the group extension $(T_{\varphi})^r \times T^s$ is ergodic over $(T^r \times T^s, \eta)$;
- the Mackey action W((φ^(r) × φ^(s), T^r × T^s, η) is weakly mixing.

- $((T_{\varphi})^{r} \times T^{s})(x, t, y) = (T^{r}x, \varphi^{(r)}(x) + t, T^{s}y) = (T^{r} \times T^{s})_{\varphi^{(r)}}(x, y, t)$
- $\chi \in \widehat{G}$ is an L^{∞} -eigenvalue if for some $0 \neq f \in L^{\infty}$, we have $f \circ W_g = \chi(g) \cdot f$ for all $g \in G$.

Assume that T has the AOP property and for each $r \neq s$, $r, s \in \mathcal{P}$ and arbitrary $\eta \in J^{e}(T^{r}, T^{s})$:

- the group extension $(T_{\varphi})^r \times T^s$ is ergodic over $(T^r \times T^s, \eta)$;
- the Mackey action W((φ^(r) × φ^(s), T^r × T^s, η) is weakly mixing.

$$((T_{\varphi})^{r} \times T^{s})(x, t, y) = (T^{r}x, \varphi^{(r)}(x) + t, T^{s}y) = (T^{r} \times T^{s})_{\varphi^{(r)}}(x, y, t)$$

- $\chi \in \widehat{G}$ is an L^{∞} -eigenvalue if for some $0 \neq f \in L^{\infty}$, we have $f \circ W_g = \chi(g) \cdot f$ for all $g \in G$.

Assume that T has the AOP property and for each $r \neq s$, $r, s \in \mathcal{P}$ and arbitrary $\eta \in J^{e}(T^{r}, T^{s})$:

- the group extension $(T_{\varphi})^r \times T^s$ is ergodic over $(T^r \times T^s, \eta)$;
- the Mackey action W((φ^(r) × φ^(s), T^r × T^s, η) is weakly mixing.

$$((T_{\varphi})^{r} \times T^{s})(x, t, y) = (T^{r}x, \varphi^{(r)}(x) + t, T^{s}y) = (T^{r} \times T^{s})_{\varphi^{(r)}}(x, y, t)$$

- A G-action W is weakly mixing ⇔ the only L[∞] eigenvalue of W is the trivial character.
- $\chi \in \widehat{G}$ is an L^{∞} -eigenvalue if for some $0 \neq f \in L^{\infty}$, we have $f \circ W_g = \chi(g) \cdot f$ for all $g \in G$.

Recall that $(a_n) \subset G$ is called <u>ergodic</u> if for each ergodic $S = (S_g)_{g \in G} \subset Aut(Y, C, \nu)$, we have

$$\frac{1}{N}\sum_{n\leq N}f\circ S_{b_n}\rightarrow \int f\;d\nu$$
 in L^2

for each $f \in L^2(Y, \mathcal{C}, \nu)$.

Let T be uniquely ergodic, let φ: X → G be continuous and let W(φ) be weakly mixing.

Then $(\varphi^{(n)}(x))$ is ergodic for each $x \in X$. In particular, the assertion holds if φ is ergodic.¹⁴

In our setting $(T_{\varphi})^r \times (T_{\varphi})^s$ is ergodic $\Rightarrow (T_{\varphi})^r$ is ergodic $\Rightarrow T_{\varphi}$ is ergodic $\Rightarrow (\varphi^{(n)}(x))$ is ergodic.

• $([n^c]), \ c \in (0,1),$ is also ergodic.¹⁵

¹⁴Lemańczyk, Lesigne, Parreau, Volný, Wierdl 2002
 ¹⁵Bergelson, Boshernitzan, Bourgain 1994

Recall that $(a_n) \subset G$ is called <u>ergodic</u> if for each ergodic $S = (S_g)_{g \in G} \subset Aut(Y, C, \nu)$, we have

$$\frac{1}{N}\sum_{n\leq N}f\circ S_{b_n}\rightarrow \int f\;d\nu$$
 in L^2

for each $f \in L^2(Y, \mathcal{C}, \nu)$.

 Let T be uniquely ergodic, let φ: X → G be continuous and let W(φ) be weakly mixing. Then (φ⁽ⁿ⁾(x)) is ergodic for each x ∈ X. In particular, the assertion holds if φ is ergodic.¹⁴

In our setting $(T_{\varphi})^r \times (T_{\varphi})^s$ is ergodic $\Rightarrow (T_{\varphi})^r$ is ergodic $\Rightarrow T_{\varphi}$ is ergodic $\Rightarrow (\varphi^{(n)}(x))$ is ergodic.

• $([n^c]), c \in (0, 1),$ is also ergodic.¹⁵

¹⁴Lemańczyk, Lesigne, Parreau, Volný, Wierdl 2002
 ¹⁵Bergelson, Boshernitzan, Bourgain 1994

Recall that $(a_n) \subset G$ is called <u>ergodic</u> if for each ergodic $S = (S_g)_{g \in G} \subset Aut(Y, C, \nu)$, we have

$$\frac{1}{N}\sum_{n\leq N}f\circ S_{b_n}\rightarrow \int f\;d\nu$$
 in L^2

for each $f \in L^2(Y, \mathcal{C}, \nu)$.

• Let T be uniquely ergodic, let $\varphi: X \to G$ be continuous and let $\mathcal{W}(\varphi)$ be weakly mixing.

Then $(\varphi^{(n)}(x))$ is ergodic for each $x \in X$. In particular, the assertion holds if φ is ergodic.¹⁴

In our setting $(T_{\varphi})^r \times (T_{\varphi})^s$ is ergodic $\Rightarrow (T_{\varphi})^r$ is ergodic $\Rightarrow T_{\varphi}$ is ergodic $\Rightarrow (\varphi^{(n)}(x))$ is ergodic.

ullet $([n^c]),\ c\in (0,1),$ is also ergodic. 15

¹⁴Lemańczyk, Lesigne, Parreau, Volný, Wierdl 2002
 ¹⁵Bergelson, Boshernitzan, Bourgain 1994

Recall that $(a_n) \subset G$ is called <u>ergodic</u> if for each ergodic $S = (S_g)_{g \in G} \subset Aut(Y, C, \nu)$, we have

$$\frac{1}{N}\sum_{n\leq N}f\circ S_{b_n}\rightarrow \int f\;d\nu$$
 in L^2

for each $f \in L^2(Y, \mathcal{C}, \nu)$.

Let T be uniquely ergodic, let φ: X → G be continuous and let W(φ) be weakly mixing.

Then $(\varphi^{(n)}(x))$ is ergodic for each $x \in X$. In particular, the assertion holds if φ is ergodic.¹⁴

In our setting $(T_{\varphi})^r \times (T_{\varphi})^s$ is ergodic $\Rightarrow (T_{\varphi})^r$ is ergodic $\Rightarrow T_{\varphi}$ is ergodic $\Rightarrow (\varphi^{(n)}(x))$ is ergodic.

• ([n^c]), $c \in (0, 1)$, is also ergodic.¹⁵

¹⁴Lemańczyk, Lesigne, Parreau, Volný, Wierdl 2002

¹⁵Bergelson, Boshernitzan, Bourgain 1994

Suppose now that T is a totally ergodic rotation.

- Then *T* has the AOP property.¹⁰
- WLOG: X is a compact monothetic group, $Tx = x + \alpha$, where $\{n\alpha : n \in \mathbb{Z}\}$ is dense in X.

We describe now $J^e(T^r, T^s)$. Let $a, b \in \mathbb{Z}$ so that ar + bs = 1. Fix $u \in X$ and consider $A_u := \{(x, y + u) \in X \times X : sx = ry\}$.

 V_u is given by $V_u(x, y + u) = ax + by$. Since T is uniquely ergodic, each ergodic joining of T^r and T^s is supported on one of the sets A_u .

Suppose now that T is a totally ergodic rotation.

- Then *T* has the AOP property.¹⁶
- WLOG: X is a compact monothetic group, $Tx = x + \alpha$, where $\{n\alpha : n \in \mathbb{Z}\}$ is dense in X.

We describe now $J^e(T^r, T^s)$. Let $a, b \in \mathbb{Z}$ so that ar + bs = 1. Fix $u \in X$ and consider $A_u := \{(x, y + u) \in X \times X : sx = ry\}$.

 V_u is given by $V_u(x, y + u) = ax + by$. Since T is uniquely ergodic, each ergodic joining of T^r and T^s is supported on one of the sets A_u .

Suppose now that T is a totally ergodic rotation.

- Then *T* has the AOP property.¹⁶
- WLOG: X is a compact monothetic group, $Tx = x + \alpha$, where $\{n\alpha : n \in \mathbb{Z}\}$ is dense in X.

We describe now $J^e(T^r, T^s)$. Let $a, b \in \mathbb{Z}$ so that ar + bs = 1. Fix $u \in X$ and consider $A_u := \{(x, y + u) \in X \times X : sx = ry\}$.

 V_u is given by $V_u(x, y + u) = ax + by$. Since T is uniquely ergodic, each ergodic joining of T^r and T^s is supported on one of the sets A_u .

Suppose now that T is a totally ergodic rotation.

- Then *T* has the AOP property.¹⁶
- WLOG: X is a compact monothetic group, $Tx = x + \alpha$, where $\{n\alpha : n \in \mathbb{Z}\}$ is dense in X.

We describe now $J^e(T^r, T^s)$. Let $a, b \in \mathbb{Z}$ so that ar + bs = 1. Fix $u \in X$ and consider $A_u := \{(x, y + u) \in X \times X : sx = ry\}$.

 V_u is given by $V_u(x, y + u) = ax + by$. Since T is uniquely ergodic, each ergodic joining of T^r and T^s is supported on one of the sets A_u .

Suppose now that T is a totally ergodic rotation.

- Then *T* has the AOP property.¹⁶
- WLOG: X is a compact monothetic group, $Tx = x + \alpha$, where $\{n\alpha : n \in \mathbb{Z}\}$ is dense in X.

We describe now $J^e(T^r, T^s)$. Let $a, b \in \mathbb{Z}$ so that ar + bs = 1. Fix $u \in X$ and consider $A_u := \{(x, y + u) \in X \times X : sx = ry\}$.

Figure: A_0 for s = 3, r = 2

 V_u is given by $V_u(x, y + u) = ax + by$. Since T is uniquely ergodic, each ergodic joining of T^r and T^s is supported on one of the sets A_u .

Suppose now that T is a totally ergodic rotation.

- Then *T* has the AOP property.¹⁶
- WLOG: X is a compact monothetic group, $Tx = x + \alpha$, where $\{n\alpha : n \in \mathbb{Z}\}$ is dense in X.

We describe now $J^e(T^r, T^s)$. Let $a, b \in \mathbb{Z}$ so that ar + bs = 1. Fix $u \in X$ and consider $A_u := \{(x, y + u) \in X \times X : sx = ry\}$.

Figure: A_0 for s = 3, r = 2

 V_u is given by $V_u(x, y + u) = ax + by$. Since T is uniquely ergodic, each ergodic joining of T^r and T^s is supported on one of the sets A_u .

Suppose now that T is a totally ergodic rotation.

- Then *T* has the AOP property.¹⁶
- WLOG: X is a compact monothetic group, $Tx = x + \alpha$, where $\{n\alpha : n \in \mathbb{Z}\}$ is dense in X.

We describe now $J^e(T^r, T^s)$. Let $a, b \in \mathbb{Z}$ so that ar + bs = 1. Fix $u \in X$ and consider $A_u := \{(x, y + u) \in X \times X : sx = ry\}$.

 V_u is given by $V_u(x, y + u) = ax + by$. Since T is uniquely ergodic, each ergodic joining of T^r and T^s is supported on one of the sets A_u .

Assume that T has the AOP property. Assume for each $r \neq s$, $r, s \in \mathcal{P}$ and arbitrary $\eta \in J^{e}(T^{r}, T^{s})$:

(T_φ)^r × T^s is ergodic over (T^r × T^s, η);
 W((φ^(r) × φ^(s), T^r × T^s, η) is weakly mixing.

Let $S = (S_g)_{g \in G}$ be an ergodic G-action on (Y, C, ν) . Then $T_{\varphi,S}$ has the AOP property.

- $A_u \times G \times G$ are pairwise disjoint, closed, invariant under $(T^r \times T^s)_{\varphi^{(r)} \times \varphi^{(s)}}$ and their union is $X \times X \times G \times G$.
- $(T^r \times T^s)_{\varphi^{(r)} \times \varphi^{(s)}|_{A_u \times G \times G}} \simeq T_{\varphi^{(r)}(r \cdot) \times \varphi^{(s)}(s \cdot + u)} \text{ (topological isom. via } J_u(x, y + u, g, h) = (ax + by, g, h))$
- $(T^r \times T^s, \eta)_{\varphi(r)}|_{A_u \times G} \simeq T_{\varphi(r)(r \cdot)} \text{ via } J_u.$

Assume that T has the AOP property. Assume for each $r \neq s$, $r, s \in \mathcal{P}$ and arbitrary $\eta \in J^e(T^r, T^s)$:

Let $S = (S_g)_{g \in G}$ be an ergodic G-action on (Y, C, ν) . Then $T_{\varphi,S}$ has the AOP property.

- $A_u \times G \times G$ are pairwise disjoint, closed, invariant under $(T^r \times T^s)_{\varphi^{(r)} \times \varphi^{(s)}}$ and their union is $X \times X \times G \times G$.
- $(T^r \times T^s)_{\varphi^{(r)} \times \varphi^{(s)}}|_{A_u \times G \times G} \simeq T_{\varphi^{(r)}(r \cdot) \times \varphi^{(s)}(s \cdot + u)} \text{ (topological isom. via } J_u(x, y + u, g, h) = (ax + by, g, h))$

$$(T^r \times T^s, \eta)_{\varphi^{(r)}}|_{A_u \times G} \simeq T_{\varphi^{(r)}(r)} \text{ via } J_u.$$

Let T be a totally ergodic rotation on X. Assume for each $r \neq s$, $r, s \in \mathcal{P}$ and arbitrary $\eta \in J^{e}(T^{r}, T^{s})$:

Let $S = (S_g)_{g \in G}$ be an ergodic G-action on (Y, C, ν) . Then $T_{\varphi,S}$ has the AOP property.

- $A_u \times G \times G$ are pairwise disjoint, closed, invariant under $(T^r \times T^s)_{\varphi^{(r)} \times \varphi^{(s)}}$ and their union is $X \times X \times G \times G$.
- $(T^r \times T^s)_{\varphi^{(r)} \times \varphi^{(s)}|_{A_u \times G \times G}} \simeq T_{\varphi^{(r)}(r \cdot) \times \varphi^{(s)}(s \cdot + u)} \text{ (topological isom. via } J_u(x, y + u, g, h) = (ax + by, g, h))$

$$(T^r \times T^s, \eta)_{\varphi^{(r)}}|_{A_u \times G} \simeq T_{\varphi^{(r)}(r)} \text{ via } J_u.$$

Let T be a totally ergodic rotation on X. Assume for each $r \neq s$, $r, s \in \mathcal{P}$ and arbitrary $\eta \in J^{e}(T^{r}, T^{s})$:

(T_φ)^r × T^s is ergodic over (T^r × T^s, η);
 W((φ^(r) × φ^(s), T^r × T^s, η) is weakly mixing.

Let $S = (S_g)_{g \in G}$ be an ergodic G-action on (Y, C, ν) . Then $T_{\varphi,S}$ has the AOP property.

- $A_u \times G \times G$ are pairwise disjoint, closed, invariant under $(T^r \times T^s)_{\varphi^{(r)} \times \varphi^{(s)}}$ and their union is $X \times X \times G \times G$.
- $(T^r \times T^s)_{\varphi^{(r)} \times \varphi^{(s)}|_{A_u \times G \times G}} \simeq T_{\varphi^{(r)}(r \cdot) \times \varphi^{(s)}(s \cdot + u)} \text{ (topological isom. via } J_u(x, y + u, g, h) = (ax + by, g, h))$
- $(T^r \times T^s, \eta)_{\varphi^{(r)}}|_{\mathcal{A}_u \times G} \simeq T_{\varphi^{(r)}(r)} \text{ via } J_u.$

Let T be a totally ergodic rotation on X. Assume for each $r \neq s$, $r, s \in \mathcal{P}$ and arbitrary $\eta \in J^{e}(T^{r}, T^{s})$:

(T_φ)^r × T^s is ergodic over (T^r × T^s, η);
 W((φ^(r) × φ^(s), T^r × T^s, η) is weakly mixing.

Let $S = (S_g)_{g \in G}$ be an ergodic G-action on (Y, C, ν) . Then $T_{\varphi,S}$ has the AOP property.

- $A_u \times G \times G$ are pairwise disjoint, closed, invariant under $(T^r \times T^s)_{\varphi^{(r)} \times \varphi^{(s)}}$ and their union is $X \times X \times G \times G$.
- $(T^r \times T^s)_{\varphi^{(r)} \times \varphi^{(s)}|_{A_u \times G \times G}} \simeq T_{\varphi^{(r)}(r \cdot) \times \varphi^{(s)}(s \cdot + u)} \text{ (topological isom. via } J_u(x, y + u, g, h) = (ax + by, g, h))$
- $(T^r \times T^s, \eta)_{\varphi^{(r)}}|_{\mathcal{A}_u \times G} \simeq T_{\varphi^{(r)}(r)} \text{ via } J_u.$

Let T be a totally ergodic rotation on X. Assume for each $r \neq s$, $r, s \in \mathcal{P}$ and $\begin{bmatrix} arbitrary \ \eta \in J^e(T^r, T^s) \end{bmatrix}$: $(T_{\varphi})^r \times T^s$ is ergodic over $(T^r \times T^s, \eta)$; $\mathcal{W}((\varphi^{(r)} \times \varphi^{(s)}, T^r \times T^s, \eta)$ is weakly mixing. Let $S = (S_g)_{g \in G}$ be an ergodic G-action on (Y, C, ν) . Then $T_{\varphi,S}$ has the AOP property.

- $A_u \times G \times G$ are pairwise disjoint, closed, invariant under $(T^r \times T^s)_{\varphi^{(r)} \times \varphi^{(s)}}$ and their union is $X \times X \times G \times G$.
- $(T^r \times T^s)_{\varphi^{(r)} \times \varphi^{(s)}}|_{A_u \times G \times G} \simeq T_{\varphi^{(r)}(r \cdot) \times \varphi^{(s)}(s \cdot + u)} \text{ (topological isom. via } J_u(x, y + u, g, h) = (ax + by, g, h))$
- $(T^r \times T^s, \eta)_{\varphi^{(r)}}|_{A_u \times G} \simeq T_{\varphi^{(r)}(r \cdot)} \text{ via } J_u.$

Let T be a totally ergodic rotation on X. Assume for each $r \neq s$, $r, s \in \mathcal{P}$ and $\begin{bmatrix} arbitrary \ \eta \in J^e(T^r, T^s) \end{bmatrix}$: $(T_{\varphi})^r \times T^s$ is ergodic over $(T^r \times T^s, \eta)$; $\mathcal{W}((\varphi^{(r)} \times \varphi^{(s)}, T^r \times T^s, \eta)$ is weakly mixing. Let $S = (S_g)_{g \in G}$ be an ergodic G-action on (Y, C, ν) . Then $T_{\varphi,S}$ has the AOP property.

- $A_u \times G \times G$ are pairwise disjoint, closed, invariant under $(T^r \times T^s)_{\varphi^{(r)} \times \varphi^{(s)}}$ and their union is $X \times X \times G \times G$.
- $(T^r \times T^s)_{\varphi^{(r)} \times \varphi^{(s)}} |_{A_u \times G \times G} \simeq T_{\varphi^{(r)}(r \cdot) \times \varphi^{(s)}(s \cdot + u)}$ (topological isom. via $J_u(x, y + u, g, h) = (ax + by, g, h)$)
- $(T^r \times T^s, \eta)_{\varphi^{(r)}}|_{A_u \times G} \simeq T_{\varphi^{(r)}(r)} \text{ via } J_u.$

Let T be a totally ergodic rotation on X. Assume for each $r \neq s$, $r, s \in \mathcal{P}$ and $\begin{bmatrix} arbitrary \ \eta \in J^e(T^r, T^s) \end{bmatrix}$: $(T_{\varphi})^r \times T^s$ is ergodic over $(T^r \times T^s, \eta)$; $\mathcal{W}((\varphi^{(r)} \times \varphi^{(s)}, T^r \times T^s, \eta)$ is weakly mixing. Let $S = (S_g)_{g \in G}$ be an ergodic G-action on (Y, C, ν) . Then $T_{\varphi,S}$ has the AOP property.

- $A_u \times G \times G$ are pairwise disjoint, closed, invariant under $(T^r \times T^s)_{\varphi^{(r)} \times \varphi^{(s)}}$ and their union is $X \times X \times G \times G$.
- $(T^r \times T^s)_{\varphi^{(r)} \times \varphi^{(s)}} |_{A_u \times G \times G} \simeq T_{\varphi^{(r)}(r \cdot) \times \varphi^{(s)}(s \cdot + u)}$ (topological isom. via $J_u(x, y + u, g, h) = (ax + by, g, h)$)
- $(T^r \times T^s, \eta)_{\varphi^{(r)}}|_{\mathcal{A}_u \times G} \simeq T_{\varphi^{(r)}(r)}$ via J_u .

Let T be a totally ergodic rotation on X. Assume for each $r \neq s$, $r, s \in \mathcal{P}$ and arbitrary $\eta \in J^{e}(T^{r}, T^{s})$:

$$| (T_{\varphi})^r \times T^s \text{ is ergodic over } (T^r \times T^s, \eta);$$

• $\overline{\mathcal{W}((\varphi^{(r)} \times \varphi^{(s)}, T^r \times T^s, \eta))}$ is weakly mixing.

Let $S = (S_g)_{g \in G}$ be an ergodic G-action on (Y, C, ν) . Then $T_{\varphi,S}$ has the AOP property.

We need to describe $(T^r \times T^s)_{\varphi^{(r)} \times \varphi^{(s)}}$ over $(T^r \times T^s, \eta)$.

 A_u × G × G are pairwise disjoint, closed, invariant under (T^r × T^s)_{φ^(r)×φ^(s)} and their union is X × X × G × G.
 (T^r × T^s)_{φ^(r)×φ^(s)}|_{Au×G×G} ≃ T_{φ^(r)(r·)×φ^(s)(s·+u)} (topological isom. via J_u(x, y + u, g, h) = (ax + by, g, h))
 (T^r × T^s, η)_{φ^(r)}|_{Au×G} ≃ T_{φ^(r)(r·)} via J_u.

Let T be a totally ergodic rotation on X. Assume for each $r \neq s$, $r, s \in \mathcal{P}$ and arbitrary $\eta \in J^{e}(T^{r}, T^{s})$:

$$| (T_{\varphi})^r \times T^s \text{ is ergodic over } (T^r \times T^s, \eta);$$

• $\mathcal{W}((\varphi^{(r)} \times \varphi^{(s)}, T^r \times T^s, \eta)$ is weakly mixing.

Let $S = (S_g)_{g \in G}$ be an ergodic G-action on (Y, C, ν) . Then $T_{\varphi,S}$ has the AOP property.

- $A_u \times G \times G$ are pairwise disjoint, closed, invariant under $(T^r \times T^s)_{\varphi^{(r)} \times \varphi^{(s)}}$ and their union is $X \times X \times G \times G$.
- $(T^r \times T^s)_{\varphi^{(r)} \times \varphi^{(s)}}|_{A_u \times G \times G} \simeq T_{\varphi^{(r)}(r \cdot) \times \varphi^{(s)}(s \cdot + u)}$ (topological isom. via $J_u(x, y + u, g, h) = (ax + by, g, h)$)
- $(T^r \times T^s, \eta)_{\varphi^{(r)}}|_{A_u \times G} \simeq T_{\varphi^{(r)}(r \cdot)}$ via J_u .

Let T be a totally ergodic rotation on X. Assume for each $r \neq s$, $r, s \in \mathcal{P}$ and arbitrary $\eta \in J^{e}(T^{r}, T^{s})$:

•
$$\left| arphi^{(r)}(r \, \cdot)
ight|$$
 is ergodic for each $r \in \mathcal{P};$

• $\overline{\mathcal{W}}((\varphi^{(r)} \times \varphi^{(s)}, T^r \times T^s, \eta)$ is weakly mixing.

Let $S = (S_g)_{g \in G}$ be an ergodic G-action on (Y, C, ν) . Then $T_{\varphi,S}$ has the AOP property.

- $A_u \times G \times G$ are pairwise disjoint, closed, invariant under $(T^r \times T^s)_{\varphi^{(r)} \times \varphi^{(s)}}$ and their union is $X \times X \times G \times G$.
- $(T^r \times T^s)_{\varphi^{(r)} \times \varphi^{(s)}}|_{A_u \times G \times G} \simeq T_{\varphi^{(r)}(r \cdot) \times \varphi^{(s)}(s \cdot + u)}$ (topological isom. via $J_u(x, y + u, g, h) = (ax + by, g, h)$)

•
$$(T^r \times T^s, \eta)_{\varphi^{(r)}}|_{A_u \times G} \simeq T_{\varphi^{(r)}(r \cdot)}$$
 via J_u .

Let T be a totally ergodic rotation on X. Assume for each $r \neq s$, $r, s \in \mathcal{P}$ and arbitrary $\eta \in J^{e}(T^{r}, T^{s})$:

•
$$\varphi^{(r)}(r \cdot)$$
 is ergodic for each $r \in \mathcal{P}$;
• $\mathcal{W}((\varphi^{(r)} \times \varphi^{(s)}, T^r \times T^s, \eta)$ is weakly mixing.

Let $S = (S_g)_{g \in G}$ be an ergodic G-action on (Y, C, ν) . Then $T_{\varphi,S}$ has the AOP property.

We need to describe $(T^r \times T^s)_{\varphi^{(r)} \times \varphi^{(s)}}$ over $(T^r \times T^s, \eta)$.

A_u × G × G are pairwise disjoint, closed, invariant under (T^r × T^s)_{φ^(r)×φ^(s)} and their union is X × X × G × G.
 (T^r × T^s)_{φ^(r)×φ^(s)}|_{Au×G×G} ≃ T_{φ^(r)(r·)×φ^(s)(s·+u)} (topological isom. via J_u(x, y + u, g, h) = (ax + by, g, h))

$$(T^r \times T^s, \eta)_{\varphi^{(r)}}|_{\mathcal{A}_u \times \mathcal{G}} \simeq T_{\varphi^{(r)}(r)} \text{ via } J_u.$$

Let T be a totally ergodic rotation on X. Assume for each $r \neq s$, $r, s \in \mathcal{P}$ and arbitrary $\eta \in J^{e}(T^{r}, T^{s})$:

•
$$\varphi^{(r)}(r \cdot)$$
 is ergodic for each $r \in \mathcal{P}$;
• $\mathcal{W}((\varphi^{(r)} \times \varphi^{(s)}, T^r \times T^s, \eta)$ is weakly mixing.

Let $S = (S_g)_{g \in G}$ be an ergodic G-action on (Y, C, ν) . Then $T_{\varphi,S}$ has the AOP property.

- $A_u \times G \times G$ are pairwise disjoint, closed, invariant under $(T^r \times T^s)_{\varphi^{(r)} \times \varphi^{(s)}}$ and their union is $X \times X \times G \times G$.
- $(T^r \times T^s)_{\varphi^{(r)} \times \varphi^{(s)}}|_{A_u \times G \times G} \simeq T_{\varphi^{(r)}(r\cdot) \times \varphi^{(s)}(s\cdot+u)}$ (topological isom. via $J_u(x, y + u, g, h) = (ax + by, g, h)$)

$$(T^r \times T^s, \eta)_{\varphi^{(r)}}|_{A_u \times G} \simeq T_{\varphi^{(r)}(r)} \text{ via } J_u.$$

Let T be a totally ergodic rotation on X. Assume for each $r \neq s$, $r, s \in \mathcal{P}$ and arbitrary $\eta \in J^{e}(T^{r}, T^{s})$:

•
$$\varphi^{(r)}(r \cdot)$$
 is ergodic for each $r \in \mathcal{P}$;
• $\mathcal{W}(\varphi^{(r)}(r \cdot) \times \varphi^{(s)}(s \cdot + u))$ is weakly mixing for any u .

Let $S = (S_g)_{g \in G}$ be an ergodic G-action on (Y, C, ν) . Then $T_{\varphi,S}$ has the AOP property.

We need to describe $(T^r \times T^s)_{\varphi^{(r)} \times \varphi^{(s)}}$ over $(T^r \times T^s, \eta)$.

A_u × G × G are pairwise disjoint, closed, invariant under (T^r × T^s)_{φ^(r)×φ^(s)} and their union is X × X × G × G.
 (T^r × T^s)_{φ^(r)×φ^(s)}|_{Au×G×G} ≃ T_{φ^(r)(r·)×φ^(s)(s·+u)} (topological isom. via J_u(x, y + u, g, h) = (ax + by, g, h))

$$(T^r \times T^s, \eta)_{\varphi^{(r)}}|_{A_u \times G} \simeq T_{\varphi^{(r)}(r \cdot)} \text{ via } J_u.$$

Let T be a totally ergodic rotation on X. Assume for each $r \neq s$, $r, s \in \mathcal{P}$ and arbitrary $\eta \in J^e(T^r, T^s)$:

•
$$\varphi^{(r)}(r \cdot)$$
 is ergodic for each $r \in \mathcal{P}$;
• $\mathcal{W}(\varphi^{(r)}(r \cdot) \times \varphi^{(s)}(s \cdot + u))$ is weakly mixing for any u .

Let $S = (S_g)_{g \in G}$ be an ergodic G-action on (Y, C, ν) . Then $T_{\varphi,S}$ has the AOP property.

- $A_u \times G \times G$ are pairwise disjoint, closed, invariant under $(T^r \times T^s)_{\varphi^{(r)} \times \varphi^{(s)}}$ and their union is $X \times X \times G \times G$.
- $(T^r \times T^s)_{\varphi^{(r)} \times \varphi^{(s)}}|_{A_u \times G \times G} \simeq T_{\varphi^{(r)}(r \cdot) \times \varphi^{(s)}(s \cdot + u)}$ (topological isom. via $J_u(x, y + u, g, h) = (ax + by, g, h)$)

$$(T^r \times T^s, \eta)_{\varphi^{(r)}}|_{A_u \times G} \simeq T_{\varphi^{(r)}(r)} \text{ via } J_u.$$

Let T be a totally ergodic rotation on X. Assume for each $r \neq s$, $r, s \in \mathcal{P}$:

•
$$\varphi^{(r)}(r \cdot)$$
 is ergodic for each $r \in \mathcal{P}$;
• $\mathcal{W}(\varphi^{(r)}(r \cdot) \times \varphi^{(s)}(s \cdot + u))$ is weakly mixing for any u .
et $S = (S_g)_{g \in G}$ be an ergodic G-action on (Y, C, ν) .

Then $T_{\varphi,S}$ has the AOP property.

- $A_u \times G \times G$ are pairwise disjoint, closed, invariant under $(T^r \times T^s)_{\varphi^{(r)} \times \varphi^{(s)}}$ and their union is $X \times X \times G \times G$.
- $(T^r \times T^s)_{\varphi^{(r)} \times \varphi^{(s)}}|_{A_u \times G \times G} \simeq T_{\varphi^{(r)}(r \cdot) \times \varphi^{(s)}(s \cdot + u)}$ (topological isom. via $J_u(x, y + u, g, h) = (ax + by, g, h)$)

$$(T^r \times T^s, \eta)_{\varphi^{(r)}}|_{A_u \times G} \simeq T_{\varphi^{(r)}(r \cdot)} \text{ via } J_u.$$

Let T be a totally ergodic rotation on X. Assume for each $r \neq s$, $r, s \in \mathcal{P}$:

• $\varphi^{(r)}(r \cdot)$ is ergodic for each $r \in \mathcal{P}$; • $\mathcal{W}(\varphi^{(r)}(r \cdot) \times \varphi^{(s)}(s \cdot + u))$ is weakly mixing for any u.

Let $S = (S_g)_{g \in G}$ be an ergodic G-action on (Y, C, ν) . Then $T_{\varphi,S}$ has the AOP property.

Theorem (KP, Lemańczyk)

Assume that $f \in C^{1+\delta}(\mathbb{T})$, $\delta > 0$, $\int_{\mathbb{T}} f d\lambda_{\mathbb{T}} = 0$, not a trigonometric polynomial. Then, for a generic α , for $Tx = x + \alpha$:

f^(r)(
$$r$$
·) is ergodic for each $r \in \mathcal{P}$;

• $\mathcal{W}(f^{(r)}(r) \times f^{(s)}(s \cdot + u))$ is weakly mixing for r < s in \mathcal{P} .

In particular, for each ergodic flow $S = (S_t)_{t \in \mathbb{R}} \subset Aut(Y, C, \nu)$, $T_{\varphi,S}$ has the AOP property.

Rokhlin extensions with AOP – consequences

Suppose that T is uniquely ergodic $\varphi \colon X \to \mathbb{R}$ is continuous and ergodic, $S = (S_t)_{t \in \mathbb{R}}$ is uniquely ergodic and we have AOP for $T_{\varphi,S}$. Take F(x,y) = f(y). Then, by strong MOMO,

$$0 = \lim_{K \to \infty} \frac{1}{b_{K+1}} \sum_{k \le K} \left| \sum_{b_k \le n < b_{k+1}} F((T_{\varphi,S})^n(x, y_k)) \boldsymbol{u}(n) \right|$$
$$= \lim_{K \to \infty} \frac{1}{b_{K+1}} \sum_{k \le K} \left| \sum_{b_k \le n < b_{k+1}} f(S_{\varphi^{(n)}(x)}(y_k)) \boldsymbol{u}(n) \right|$$
$$= \lim_{K \to \infty} \frac{1}{b_{K+1}} \sum_{k \le K} \left| \sum_{b_k \le n < b_{k+1}} f(S_{a_n}(y_k)) \boldsymbol{u}(n) \right|,$$

where a_n = φ⁽ⁿ⁾(x) (this sequence does not depend on S).
 ■ If for proving AOP we use the results from the previous part of the talk, we can take ANY uniquely ergodic S.

Rokhlin extensions with AOP – consequences

Suppose that T is uniquely ergodic $\varphi \colon X \to \mathbb{R}$ is continuous and ergodic, $S = (S_t)_{t \in \mathbb{R}}$ is uniquely ergodic and we have AOP for $T_{\varphi,S}$. Take F(x, y) = f(y). Then, by strong MOMO,

$$0 = \lim_{K \to \infty} \frac{1}{b_{K+1}} \sum_{k \le K} \left| \sum_{b_k \le n < b_{k+1}} F((T_{\varphi,S})^n(x, y_k)) \boldsymbol{u}(n) \right|$$
$$= \lim_{K \to \infty} \frac{1}{b_{K+1}} \sum_{k \le K} \left| \sum_{b_k \le n < b_{k+1}} f(S_{\varphi^{(n)}(x)}(y_k)) \boldsymbol{u}(n) \right|$$
$$= \lim_{K \to \infty} \frac{1}{b_{K+1}} \sum_{k \le K} \left| \sum_{b_k \le n < b_{k+1}} f(S_{a_n}(y_k)) \boldsymbol{u}(n) \right|,$$

where a_n = φ⁽ⁿ⁾(x) (this sequence does not depend on S).
 If for proving AOP we use the results from the previous part of the talk, we can take ANY uniquely ergodic S.

Rokhlin extensions with AOP – consequences

Suppose that T is uniquely ergodic $\varphi \colon X \to \mathbb{R}$ is continuous and ergodic, $S = (S_t)_{t \in \mathbb{R}}$ is uniquely ergodic and we have AOP for $T_{\varphi,S}$. Take F(x, y) = f(y). Then, by strong MOMO,

$$0 = \lim_{K \to \infty} \frac{1}{b_{K+1}} \sum_{k \le K} \left| \sum_{b_k \le n < b_{k+1}} F((T_{\varphi,S})^n(x, y_k)) \boldsymbol{u}(n) \right|$$
$$= \lim_{K \to \infty} \frac{1}{b_{K+1}} \sum_{k \le K} \left| \sum_{b_k \le n < b_{k+1}} f(S_{\varphi^{(n)}(x)}(y_k)) \boldsymbol{u}(n) \right|$$
$$= \lim_{K \to \infty} \frac{1}{b_{K+1}} \sum_{k \le K} \left| \sum_{b_k \le n < b_{k+1}} f(S_{a_n}(y_k)) \boldsymbol{u}(n) \right|,$$

where a_n = φ⁽ⁿ⁾(x) (this sequence does not depend on S).
■ If for proving AOP we use the results from the previous part of the talk, we can take **ANY uniquely ergodic** S.
Suppose that T is uniquely ergodic $\varphi \colon X \to \mathbb{R}$ is continuous and ergodic, $S = (S_t)_{t \in \mathbb{R}}$ is uniquely ergodic and we have AOP for $T_{\varphi,S}$. Take F(x,y) = f(y). Then, by strong MOMO,

$$0 = \lim_{K \to \infty} \frac{1}{b_{K+1}} \sum_{k \le K} \left| \sum_{b_k \le n < b_{k+1}} F((T_{\varphi,S})^n(x, y_k)) \boldsymbol{u}(n) \right|$$
$$= \lim_{K \to \infty} \frac{1}{b_{K+1}} \sum_{k \le K} \left| \sum_{b_k \le n < b_{k+1}} f(S_{\varphi^{(n)}(x)}(y_k)) \boldsymbol{u}(n) \right|$$
$$= \lim_{K \to \infty} \frac{1}{b_{K+1}} \sum_{k \le K} \left| \sum_{b_k \le n < b_{k+1}} f(S_{a_n}(y_k)) \boldsymbol{u}(n) \right|,$$

where a_n = φ⁽ⁿ⁾(x) (this sequence does not depend on S).
■ If for proving AOP we use the results from the previous part of the talk, we can take ANY uniquely ergodic S.

Suppose that T is uniquely ergodic $\varphi \colon X \to \mathbb{R}$ is continuous and ergodic, $S = (S_t)_{t \in \mathbb{R}}$ is uniquely ergodic and we have AOP for $T_{\varphi,S}$. Take F(x,y) = f(y). Then, by strong MOMO,

$$0 = \lim_{K \to \infty} \frac{1}{b_{K+1}} \sum_{k \le K} \left| \sum_{b_k \le n < b_{k+1}} F((T_{\varphi,S})^n(x, y_k)) \boldsymbol{u}(n) \right|$$
$$= \lim_{K \to \infty} \frac{1}{b_{K+1}} \sum_{k \le K} \left| \sum_{b_k \le n < b_{k+1}} f(S_{\varphi^{(n)}(x)}(y_k)) \boldsymbol{u}(n) \right|$$
$$= \lim_{K \to \infty} \frac{1}{b_{K+1}} \sum_{k \le K} \left| \sum_{b_k \le n < b_{k+1}} f(S_{a_n}(y_k)) \boldsymbol{u}(n) \right|,$$

where a_n = φ⁽ⁿ⁾(x) (this sequence does not depend on S).
■ If for proving AOP we use the results from the previous part of the talk, we can take ANY uniquely ergodic S.

Suppose that T is uniquely ergodic $\varphi \colon X \to \mathbb{R}$ is continuous and ergodic, R is uniquely ergodic and we have AOP for $T_{\varphi,\widetilde{R}}$, where \widetilde{R} is the suspension flow over R. Then

$$\lim_{K\to\infty}\frac{1}{b_{K+1}}\sum_{k\leq K}\left|\sum_{b_k\leq n< b_{k+1}}f(R^{[a_n]}(z_k))\boldsymbol{u}(n)\right|=0,$$

where $a_n = \varphi^{(n)}(x)$.

■ If for proving AOP we use the results from the previous part of the talk, we can take **ANY uniquely ergodic** *R*.

Suppose that T is uniquely ergodic $\varphi \colon X \to \mathbb{R}$ is continuous and ergodic, R is uniquely ergodic and we have AOP for $T_{\varphi,\widetilde{R}}$, where \widetilde{R} is the suspension flow over R. Then

$$\lim_{K\to\infty}\frac{1}{b_{K+1}}\sum_{k\leq K}\left|\sum_{b_k\leq n< b_{k+1}}f(R^{[a_n]}(z_k))\boldsymbol{u}(n)\right|=0,$$

where $a_n = \varphi^{(n)}(x)$.

■ If for proving AOP we use the results from the previous part of the talk, we can take **ANY uniquely ergodic** *R*.

Suppose that T is uniquely ergodic $\varphi \colon X \to \mathbb{R}$ is continuous and ergodic, R is uniquely ergodic and we have AOP for $T_{\varphi,\widetilde{R}}$, where \widetilde{R} is the suspension flow over R. Then

$$\lim_{K\to\infty}\frac{1}{b_{K+1}}\sum_{k\leq K}\left|\sum_{b_k\leq n< b_{k+1}}f(R^{[a_n]}(z_k))\boldsymbol{u}(n)\right|=0,$$

where $a_n = \varphi^{(n)}(x)$.

If for proving AOP we use the results from the previous part of the talk, we can take ANY uniquely ergodic R.

E.g. for R on $\mathbb{Z}/2\mathbb{Z}$ given by Ri = i + 1 we get

$$\lim_{K\to\infty}\frac{1}{b_{K+1}}\sum_{k\leq K}\left|\sum_{b_k\leq n< b_{k+1}}(-1)^{[a_n]}\boldsymbol{u}(n)\right|=0.$$

Equivalently, as $H \to \infty$, $H/M \to 0$,

$$\frac{1}{M}\sum_{M\leq m<2M}\left|\frac{1}{H}\sum_{m\leq h< m+H}(-1)^{[a_h]}\boldsymbol{u}(h)\right|\to 0 \quad (*)$$

Notice that the above holds without any assumptions on the convergence of $\frac{1}{N} \sum_{n \le N} u(n)$.

If **u** satisfies a certain condition stronger than aperiodicity¹⁷ then (*) holds for the constant sequence (a_n) .¹⁸

¹⁷
$$\sum_{n \leq N} \mathbf{u}(an+b) = o(N)$$

¹⁸Matomäki, Radziwiłł, Tao 201

E.g. for R on $\mathbb{Z}/2\mathbb{Z}$ given by Ri = i + 1 we get

$$\lim_{K\to\infty}\frac{1}{b_{K+1}}\sum_{k\leq K}\left|\sum_{b_k\leq n< b_{k+1}}(-1)^{[a_n]}\boldsymbol{u}(n)\right|=0.$$

Equivalently, as $H
ightarrow \infty$, H/M
ightarrow 0,

$$\frac{1}{M}\sum_{M\leq m<2M}\left|\frac{1}{H}\sum_{m\leq h< m+H}(-1)^{[\boldsymbol{a}_h]}\boldsymbol{u}(h)\right|\to 0 \quad (*)$$

Notice that the above holds without any assumptions on the convergence of $\frac{1}{N} \sum_{n \le N} u(n)$.

If u satisfies a certain condition stronger than aperiodicity¹⁷ then (*) holds for the constant sequence (a_n) .¹⁸

¹⁷
$$\sum_{n \leq N} u(an + b) = o(N)$$

¹⁸Matomäki, Radziwiłł, Tao 2010

E.g. for R on $\mathbb{Z}/2\mathbb{Z}$ given by Ri = i + 1 we get

$$\lim_{K\to\infty}\frac{1}{b_{K+1}}\sum_{k\leq K}\left|\sum_{b_k\leq n< b_{k+1}}(-1)^{[a_n]}\boldsymbol{u}(n)\right|=0.$$

Equivalently, as $H
ightarrow \infty$, H/M
ightarrow 0,

$$\frac{1}{M}\sum_{M\leq m<2M}\left|\frac{1}{H}\sum_{m\leq h< m+H}(-1)^{[\boldsymbol{a}_h]}\boldsymbol{u}(h)\right|\to 0 \quad (*)$$

Notice that the above holds without any assumptions on the convergence of $\frac{1}{N} \sum_{n \le N} u(n)$.

If u satisfies a certain condition stronger than aperiodicity¹⁷ then (*) holds for the constant sequence (a_n) .¹⁸

 ${}^{17}\sum_{n\leq N} u(an+b) = o(N)$ ¹⁸Matomäki, Radziwiłł, Tao 2016

E.g. for R on $\mathbb{Z}/2\mathbb{Z}$ given by Ri = i + 1 we get

$$\lim_{K\to\infty}\frac{1}{b_{K+1}}\sum_{k\leq K}\left|\sum_{b_k\leq n< b_{k+1}}(-1)^{[a_n]}\boldsymbol{u}(n)\right|=0.$$

Equivalently, as $H
ightarrow \infty$, H/M
ightarrow 0,

$$\frac{1}{M}\sum_{M\leq m<2M}\left|\frac{1}{H}\sum_{m\leq h< m+H}(-1)^{[a_h]}\boldsymbol{u}(h)\right|\to 0 \quad (*)$$

Notice that the above holds without any assumptions on the convergence of $\frac{1}{N} \sum_{n \le N} u(n)$.

If **u** satisfies a certain condition stronger than aperiodicity¹⁷ then (*) holds for the constant sequence (a_n) .¹⁸

$${}^{17}\sum_{n\leq N} \boldsymbol{u}(an+b) = o(N)$$
¹⁸Matomäki. Radziwiłł. Tao 2016

This theory can be applied to the affine cocycle $\varphi(x) = x - 1/2$ over $Tx = x + \alpha$.

 \blacksquare To make φ continuous, we use the coordinates given by the corresponding Sturmian model.

If α is irrational with bounded partial quotients and $\alpha,\beta,1$ are rationally independent then we can take

$$a_n = \left[n\beta + \frac{n(n-1)}{2}\alpha - \frac{n}{2} - \sum_{j=1}^{n-1} [\beta + j\alpha]\right], n \ge 1.$$

This theory can be applied to the affine cocycle $\varphi(x) = x - 1/2$ over $Tx = x + \alpha$.

To make φ continuous, we use the coordinates given by the corresponding Sturmian model.

If α is irrational with bounded partial quotients and $\alpha,\beta,1$ are rationally independent then we can take

$$a_n = \left[n\beta + \frac{n(n-1)}{2}\alpha - \frac{n}{2} - \sum_{j=1}^{n-1} [\beta + j\alpha] \right], n \ge 1.$$

This theory can be applied to the affine cocycle $\varphi(x) = x - 1/2$ over $Tx = x + \alpha$.

To make φ continuous, we use the coordinates given by the corresponding Sturmian model.

If α is irrational with bounded partial quotients and $\alpha,\beta,1$ are rationally independent then we can take

$$a_n = \left[n\beta + \frac{n(n-1)}{2}\alpha - \frac{n}{2} - \sum_{j=1}^{n-1} [\beta + j\alpha]\right], n \ge 1.$$

Thank you!